Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
⊢ ( 𝑖 = ∅ → ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ↔ ( 𝑗 ∩ 𝑆 ) ≈ ∅ ) ) |
2 |
1
|
rexbidv |
⊢ ( 𝑖 = ∅ → ( ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ↔ ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ ∅ ) ) |
3 |
|
breq2 |
⊢ ( 𝑖 = 𝑎 → ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ↔ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) |
4 |
3
|
rexbidv |
⊢ ( 𝑖 = 𝑎 → ( ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ↔ ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) |
5 |
|
breq2 |
⊢ ( 𝑖 = suc 𝑎 → ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ↔ ( 𝑗 ∩ 𝑆 ) ≈ suc 𝑎 ) ) |
6 |
5
|
rexbidv |
⊢ ( 𝑖 = suc 𝑎 → ( ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ↔ ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ suc 𝑎 ) ) |
7 |
|
ordom |
⊢ Ord ω |
8 |
|
simpl |
⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → 𝑆 ⊆ ω ) |
9 |
|
0fin |
⊢ ∅ ∈ Fin |
10 |
|
eleq1 |
⊢ ( 𝑆 = ∅ → ( 𝑆 ∈ Fin ↔ ∅ ∈ Fin ) ) |
11 |
9 10
|
mpbiri |
⊢ ( 𝑆 = ∅ → 𝑆 ∈ Fin ) |
12 |
11
|
necon3bi |
⊢ ( ¬ 𝑆 ∈ Fin → 𝑆 ≠ ∅ ) |
13 |
12
|
adantl |
⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → 𝑆 ≠ ∅ ) |
14 |
|
tz7.5 |
⊢ ( ( Ord ω ∧ 𝑆 ⊆ ω ∧ 𝑆 ≠ ∅ ) → ∃ 𝑗 ∈ 𝑆 ( 𝑆 ∩ 𝑗 ) = ∅ ) |
15 |
7 8 13 14
|
mp3an2i |
⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → ∃ 𝑗 ∈ 𝑆 ( 𝑆 ∩ 𝑗 ) = ∅ ) |
16 |
|
en0 |
⊢ ( ( 𝑗 ∩ 𝑆 ) ≈ ∅ ↔ ( 𝑗 ∩ 𝑆 ) = ∅ ) |
17 |
|
incom |
⊢ ( 𝑗 ∩ 𝑆 ) = ( 𝑆 ∩ 𝑗 ) |
18 |
17
|
eqeq1i |
⊢ ( ( 𝑗 ∩ 𝑆 ) = ∅ ↔ ( 𝑆 ∩ 𝑗 ) = ∅ ) |
19 |
16 18
|
bitri |
⊢ ( ( 𝑗 ∩ 𝑆 ) ≈ ∅ ↔ ( 𝑆 ∩ 𝑗 ) = ∅ ) |
20 |
19
|
rexbii |
⊢ ( ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ ∅ ↔ ∃ 𝑗 ∈ 𝑆 ( 𝑆 ∩ 𝑗 ) = ∅ ) |
21 |
15 20
|
sylibr |
⊢ ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ ∅ ) |
22 |
|
simplrl |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → 𝑆 ⊆ ω ) |
23 |
|
omsson |
⊢ ω ⊆ On |
24 |
22 23
|
sstrdi |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → 𝑆 ⊆ On ) |
25 |
24
|
ssdifssd |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( 𝑆 ∖ suc 𝑗 ) ⊆ On ) |
26 |
|
simplr |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑗 ∈ 𝑆 ) → ¬ 𝑆 ∈ Fin ) |
27 |
|
ssel2 |
⊢ ( ( 𝑆 ⊆ ω ∧ 𝑗 ∈ 𝑆 ) → 𝑗 ∈ ω ) |
28 |
|
onfin2 |
⊢ ω = ( On ∩ Fin ) |
29 |
|
inss2 |
⊢ ( On ∩ Fin ) ⊆ Fin |
30 |
28 29
|
eqsstri |
⊢ ω ⊆ Fin |
31 |
|
peano2 |
⊢ ( 𝑗 ∈ ω → suc 𝑗 ∈ ω ) |
32 |
30 31
|
sselid |
⊢ ( 𝑗 ∈ ω → suc 𝑗 ∈ Fin ) |
33 |
27 32
|
syl |
⊢ ( ( 𝑆 ⊆ ω ∧ 𝑗 ∈ 𝑆 ) → suc 𝑗 ∈ Fin ) |
34 |
33
|
adantlr |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑗 ∈ 𝑆 ) → suc 𝑗 ∈ Fin ) |
35 |
|
ssfi |
⊢ ( ( suc 𝑗 ∈ Fin ∧ 𝑆 ⊆ suc 𝑗 ) → 𝑆 ∈ Fin ) |
36 |
35
|
ex |
⊢ ( suc 𝑗 ∈ Fin → ( 𝑆 ⊆ suc 𝑗 → 𝑆 ∈ Fin ) ) |
37 |
34 36
|
syl |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑗 ∈ 𝑆 ) → ( 𝑆 ⊆ suc 𝑗 → 𝑆 ∈ Fin ) ) |
38 |
26 37
|
mtod |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑗 ∈ 𝑆 ) → ¬ 𝑆 ⊆ suc 𝑗 ) |
39 |
|
ssdif0 |
⊢ ( 𝑆 ⊆ suc 𝑗 ↔ ( 𝑆 ∖ suc 𝑗 ) = ∅ ) |
40 |
39
|
necon3bbii |
⊢ ( ¬ 𝑆 ⊆ suc 𝑗 ↔ ( 𝑆 ∖ suc 𝑗 ) ≠ ∅ ) |
41 |
38 40
|
sylib |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑗 ∈ 𝑆 ) → ( 𝑆 ∖ suc 𝑗 ) ≠ ∅ ) |
42 |
41
|
ad2ant2lr |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( 𝑆 ∖ suc 𝑗 ) ≠ ∅ ) |
43 |
|
onint |
⊢ ( ( ( 𝑆 ∖ suc 𝑗 ) ⊆ On ∧ ( 𝑆 ∖ suc 𝑗 ) ≠ ∅ ) → ∩ ( 𝑆 ∖ suc 𝑗 ) ∈ ( 𝑆 ∖ suc 𝑗 ) ) |
44 |
25 42 43
|
syl2anc |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ∩ ( 𝑆 ∖ suc 𝑗 ) ∈ ( 𝑆 ∖ suc 𝑗 ) ) |
45 |
44
|
eldifad |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ∩ ( 𝑆 ∖ suc 𝑗 ) ∈ 𝑆 ) |
46 |
|
simprr |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) |
47 |
|
en2sn |
⊢ ( ( 𝑗 ∈ V ∧ 𝑎 ∈ V ) → { 𝑗 } ≈ { 𝑎 } ) |
48 |
47
|
el2v |
⊢ { 𝑗 } ≈ { 𝑎 } |
49 |
48
|
a1i |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → { 𝑗 } ≈ { 𝑎 } ) |
50 |
|
simprl |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → 𝑗 ∈ 𝑆 ) |
51 |
22 50
|
sseldd |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → 𝑗 ∈ ω ) |
52 |
|
nnord |
⊢ ( 𝑗 ∈ ω → Ord 𝑗 ) |
53 |
51 52
|
syl |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → Ord 𝑗 ) |
54 |
|
ordirr |
⊢ ( Ord 𝑗 → ¬ 𝑗 ∈ 𝑗 ) |
55 |
|
elinel1 |
⊢ ( 𝑗 ∈ ( 𝑗 ∩ 𝑆 ) → 𝑗 ∈ 𝑗 ) |
56 |
54 55
|
nsyl |
⊢ ( Ord 𝑗 → ¬ 𝑗 ∈ ( 𝑗 ∩ 𝑆 ) ) |
57 |
|
disjsn |
⊢ ( ( ( 𝑗 ∩ 𝑆 ) ∩ { 𝑗 } ) = ∅ ↔ ¬ 𝑗 ∈ ( 𝑗 ∩ 𝑆 ) ) |
58 |
56 57
|
sylibr |
⊢ ( Ord 𝑗 → ( ( 𝑗 ∩ 𝑆 ) ∩ { 𝑗 } ) = ∅ ) |
59 |
53 58
|
syl |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( ( 𝑗 ∩ 𝑆 ) ∩ { 𝑗 } ) = ∅ ) |
60 |
|
nnord |
⊢ ( 𝑎 ∈ ω → Ord 𝑎 ) |
61 |
|
ordirr |
⊢ ( Ord 𝑎 → ¬ 𝑎 ∈ 𝑎 ) |
62 |
60 61
|
syl |
⊢ ( 𝑎 ∈ ω → ¬ 𝑎 ∈ 𝑎 ) |
63 |
|
disjsn |
⊢ ( ( 𝑎 ∩ { 𝑎 } ) = ∅ ↔ ¬ 𝑎 ∈ 𝑎 ) |
64 |
62 63
|
sylibr |
⊢ ( 𝑎 ∈ ω → ( 𝑎 ∩ { 𝑎 } ) = ∅ ) |
65 |
64
|
ad2antrr |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( 𝑎 ∩ { 𝑎 } ) = ∅ ) |
66 |
|
unen |
⊢ ( ( ( ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ∧ { 𝑗 } ≈ { 𝑎 } ) ∧ ( ( ( 𝑗 ∩ 𝑆 ) ∩ { 𝑗 } ) = ∅ ∧ ( 𝑎 ∩ { 𝑎 } ) = ∅ ) ) → ( ( 𝑗 ∩ 𝑆 ) ∪ { 𝑗 } ) ≈ ( 𝑎 ∪ { 𝑎 } ) ) |
67 |
46 49 59 65 66
|
syl22anc |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( ( 𝑗 ∩ 𝑆 ) ∪ { 𝑗 } ) ≈ ( 𝑎 ∪ { 𝑎 } ) ) |
68 |
|
simprr |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∧ 𝑏 ∈ 𝑆 ) ) → 𝑏 ∈ 𝑆 ) |
69 |
|
simplrl |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∧ 𝑏 ∈ 𝑆 ) ) → 𝑆 ⊆ ω ) |
70 |
69 23
|
sstrdi |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∧ 𝑏 ∈ 𝑆 ) ) → 𝑆 ⊆ On ) |
71 |
|
ordsuc |
⊢ ( Ord 𝑗 ↔ Ord suc 𝑗 ) |
72 |
53 71
|
sylib |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → Ord suc 𝑗 ) |
73 |
72
|
adantrr |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∧ 𝑏 ∈ 𝑆 ) ) → Ord suc 𝑗 ) |
74 |
|
simp2 |
⊢ ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) → 𝑆 ⊆ On ) |
75 |
74
|
ssdifssd |
⊢ ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) → ( 𝑆 ∖ suc 𝑗 ) ⊆ On ) |
76 |
|
simpl1 |
⊢ ( ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ ¬ 𝑏 ∈ suc 𝑗 ) → 𝑏 ∈ 𝑆 ) |
77 |
|
simpr |
⊢ ( ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ ¬ 𝑏 ∈ suc 𝑗 ) → ¬ 𝑏 ∈ suc 𝑗 ) |
78 |
76 77
|
eldifd |
⊢ ( ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ ¬ 𝑏 ∈ suc 𝑗 ) → 𝑏 ∈ ( 𝑆 ∖ suc 𝑗 ) ) |
79 |
78
|
ex |
⊢ ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) → ( ¬ 𝑏 ∈ suc 𝑗 → 𝑏 ∈ ( 𝑆 ∖ suc 𝑗 ) ) ) |
80 |
|
onnmin |
⊢ ( ( ( 𝑆 ∖ suc 𝑗 ) ⊆ On ∧ 𝑏 ∈ ( 𝑆 ∖ suc 𝑗 ) ) → ¬ 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑗 ) ) |
81 |
75 79 80
|
syl6an |
⊢ ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) → ( ¬ 𝑏 ∈ suc 𝑗 → ¬ 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑗 ) ) ) |
82 |
81
|
con4d |
⊢ ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) → ( 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑗 ) → 𝑏 ∈ suc 𝑗 ) ) |
83 |
82
|
imp |
⊢ ( ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑗 ) ) → 𝑏 ∈ suc 𝑗 ) |
84 |
|
simp3 |
⊢ ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) → Ord suc 𝑗 ) |
85 |
|
ordsucss |
⊢ ( Ord suc 𝑗 → ( 𝑏 ∈ suc 𝑗 → suc 𝑏 ⊆ suc 𝑗 ) ) |
86 |
84 85
|
syl |
⊢ ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) → ( 𝑏 ∈ suc 𝑗 → suc 𝑏 ⊆ suc 𝑗 ) ) |
87 |
86
|
imp |
⊢ ( ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ 𝑏 ∈ suc 𝑗 ) → suc 𝑏 ⊆ suc 𝑗 ) |
88 |
87
|
sscond |
⊢ ( ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ 𝑏 ∈ suc 𝑗 ) → ( 𝑆 ∖ suc 𝑗 ) ⊆ ( 𝑆 ∖ suc 𝑏 ) ) |
89 |
|
intss |
⊢ ( ( 𝑆 ∖ suc 𝑗 ) ⊆ ( 𝑆 ∖ suc 𝑏 ) → ∩ ( 𝑆 ∖ suc 𝑏 ) ⊆ ∩ ( 𝑆 ∖ suc 𝑗 ) ) |
90 |
88 89
|
syl |
⊢ ( ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ 𝑏 ∈ suc 𝑗 ) → ∩ ( 𝑆 ∖ suc 𝑏 ) ⊆ ∩ ( 𝑆 ∖ suc 𝑗 ) ) |
91 |
|
simpl2 |
⊢ ( ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ 𝑏 ∈ suc 𝑗 ) → 𝑆 ⊆ On ) |
92 |
|
ordelon |
⊢ ( ( Ord suc 𝑗 ∧ 𝑏 ∈ suc 𝑗 ) → 𝑏 ∈ On ) |
93 |
84 92
|
sylan |
⊢ ( ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ 𝑏 ∈ suc 𝑗 ) → 𝑏 ∈ On ) |
94 |
|
onmindif |
⊢ ( ( 𝑆 ⊆ On ∧ 𝑏 ∈ On ) → 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑏 ) ) |
95 |
91 93 94
|
syl2anc |
⊢ ( ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ 𝑏 ∈ suc 𝑗 ) → 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑏 ) ) |
96 |
90 95
|
sseldd |
⊢ ( ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ 𝑏 ∈ suc 𝑗 ) → 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑗 ) ) |
97 |
83 96
|
impbida |
⊢ ( ( 𝑏 ∈ 𝑆 ∧ 𝑆 ⊆ On ∧ Ord suc 𝑗 ) → ( 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑗 ) ↔ 𝑏 ∈ suc 𝑗 ) ) |
98 |
68 70 73 97
|
syl3anc |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑗 ) ↔ 𝑏 ∈ suc 𝑗 ) ) |
99 |
|
df-suc |
⊢ suc 𝑗 = ( 𝑗 ∪ { 𝑗 } ) |
100 |
99
|
eleq2i |
⊢ ( 𝑏 ∈ suc 𝑗 ↔ 𝑏 ∈ ( 𝑗 ∪ { 𝑗 } ) ) |
101 |
98 100
|
bitrdi |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ∧ 𝑏 ∈ 𝑆 ) ) → ( 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑗 ) ↔ 𝑏 ∈ ( 𝑗 ∪ { 𝑗 } ) ) ) |
102 |
101
|
expr |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( 𝑏 ∈ 𝑆 → ( 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑗 ) ↔ 𝑏 ∈ ( 𝑗 ∪ { 𝑗 } ) ) ) ) |
103 |
102
|
pm5.32rd |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( ( 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑗 ) ∧ 𝑏 ∈ 𝑆 ) ↔ ( 𝑏 ∈ ( 𝑗 ∪ { 𝑗 } ) ∧ 𝑏 ∈ 𝑆 ) ) ) |
104 |
|
elin |
⊢ ( 𝑏 ∈ ( ∩ ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) ↔ ( 𝑏 ∈ ∩ ( 𝑆 ∖ suc 𝑗 ) ∧ 𝑏 ∈ 𝑆 ) ) |
105 |
|
elin |
⊢ ( 𝑏 ∈ ( ( 𝑗 ∪ { 𝑗 } ) ∩ 𝑆 ) ↔ ( 𝑏 ∈ ( 𝑗 ∪ { 𝑗 } ) ∧ 𝑏 ∈ 𝑆 ) ) |
106 |
103 104 105
|
3bitr4g |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( 𝑏 ∈ ( ∩ ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) ↔ 𝑏 ∈ ( ( 𝑗 ∪ { 𝑗 } ) ∩ 𝑆 ) ) ) |
107 |
106
|
eqrdv |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( ∩ ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) = ( ( 𝑗 ∪ { 𝑗 } ) ∩ 𝑆 ) ) |
108 |
|
indir |
⊢ ( ( 𝑗 ∪ { 𝑗 } ) ∩ 𝑆 ) = ( ( 𝑗 ∩ 𝑆 ) ∪ ( { 𝑗 } ∩ 𝑆 ) ) |
109 |
107 108
|
eqtrdi |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( ∩ ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) = ( ( 𝑗 ∩ 𝑆 ) ∪ ( { 𝑗 } ∩ 𝑆 ) ) ) |
110 |
|
snssi |
⊢ ( 𝑗 ∈ 𝑆 → { 𝑗 } ⊆ 𝑆 ) |
111 |
|
df-ss |
⊢ ( { 𝑗 } ⊆ 𝑆 ↔ ( { 𝑗 } ∩ 𝑆 ) = { 𝑗 } ) |
112 |
110 111
|
sylib |
⊢ ( 𝑗 ∈ 𝑆 → ( { 𝑗 } ∩ 𝑆 ) = { 𝑗 } ) |
113 |
112
|
uneq2d |
⊢ ( 𝑗 ∈ 𝑆 → ( ( 𝑗 ∩ 𝑆 ) ∪ ( { 𝑗 } ∩ 𝑆 ) ) = ( ( 𝑗 ∩ 𝑆 ) ∪ { 𝑗 } ) ) |
114 |
113
|
ad2antrl |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( ( 𝑗 ∩ 𝑆 ) ∪ ( { 𝑗 } ∩ 𝑆 ) ) = ( ( 𝑗 ∩ 𝑆 ) ∪ { 𝑗 } ) ) |
115 |
109 114
|
eqtrd |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( ∩ ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) = ( ( 𝑗 ∩ 𝑆 ) ∪ { 𝑗 } ) ) |
116 |
|
df-suc |
⊢ suc 𝑎 = ( 𝑎 ∪ { 𝑎 } ) |
117 |
116
|
a1i |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → suc 𝑎 = ( 𝑎 ∪ { 𝑎 } ) ) |
118 |
67 115 117
|
3brtr4d |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ( ∩ ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) ≈ suc 𝑎 ) |
119 |
|
ineq1 |
⊢ ( 𝑏 = ∩ ( 𝑆 ∖ suc 𝑗 ) → ( 𝑏 ∩ 𝑆 ) = ( ∩ ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) ) |
120 |
119
|
breq1d |
⊢ ( 𝑏 = ∩ ( 𝑆 ∖ suc 𝑗 ) → ( ( 𝑏 ∩ 𝑆 ) ≈ suc 𝑎 ↔ ( ∩ ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) ≈ suc 𝑎 ) ) |
121 |
120
|
rspcev |
⊢ ( ( ∩ ( 𝑆 ∖ suc 𝑗 ) ∈ 𝑆 ∧ ( ∩ ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) ≈ suc 𝑎 ) → ∃ 𝑏 ∈ 𝑆 ( 𝑏 ∩ 𝑆 ) ≈ suc 𝑎 ) |
122 |
45 118 121
|
syl2anc |
⊢ ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗 ∈ 𝑆 ∧ ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 ) ) → ∃ 𝑏 ∈ 𝑆 ( 𝑏 ∩ 𝑆 ) ≈ suc 𝑎 ) |
123 |
122
|
rexlimdvaa |
⊢ ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) → ( ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 → ∃ 𝑏 ∈ 𝑆 ( 𝑏 ∩ 𝑆 ) ≈ suc 𝑎 ) ) |
124 |
|
ineq1 |
⊢ ( 𝑏 = 𝑗 → ( 𝑏 ∩ 𝑆 ) = ( 𝑗 ∩ 𝑆 ) ) |
125 |
124
|
breq1d |
⊢ ( 𝑏 = 𝑗 → ( ( 𝑏 ∩ 𝑆 ) ≈ suc 𝑎 ↔ ( 𝑗 ∩ 𝑆 ) ≈ suc 𝑎 ) ) |
126 |
125
|
cbvrexvw |
⊢ ( ∃ 𝑏 ∈ 𝑆 ( 𝑏 ∩ 𝑆 ) ≈ suc 𝑎 ↔ ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ suc 𝑎 ) |
127 |
123 126
|
syl6ib |
⊢ ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) → ( ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 → ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ suc 𝑎 ) ) |
128 |
127
|
ex |
⊢ ( 𝑎 ∈ ω → ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → ( ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑎 → ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ suc 𝑎 ) ) ) |
129 |
2 4 6 21 128
|
finds2 |
⊢ ( 𝑖 ∈ ω → ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) ) |
130 |
129
|
impcom |
⊢ ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑖 ∈ ω ) → ∃ 𝑗 ∈ 𝑆 ( 𝑗 ∩ 𝑆 ) ≈ 𝑖 ) |