| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq2 | ⊢ ( 𝑖  =  ∅  →  ( ( 𝑗  ∩  𝑆 )  ≈  𝑖  ↔  ( 𝑗  ∩  𝑆 )  ≈  ∅ ) ) | 
						
							| 2 | 1 | rexbidv | ⊢ ( 𝑖  =  ∅  →  ( ∃ 𝑗  ∈  𝑆 ( 𝑗  ∩  𝑆 )  ≈  𝑖  ↔  ∃ 𝑗  ∈  𝑆 ( 𝑗  ∩  𝑆 )  ≈  ∅ ) ) | 
						
							| 3 |  | breq2 | ⊢ ( 𝑖  =  𝑎  →  ( ( 𝑗  ∩  𝑆 )  ≈  𝑖  ↔  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) ) | 
						
							| 4 | 3 | rexbidv | ⊢ ( 𝑖  =  𝑎  →  ( ∃ 𝑗  ∈  𝑆 ( 𝑗  ∩  𝑆 )  ≈  𝑖  ↔  ∃ 𝑗  ∈  𝑆 ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) ) | 
						
							| 5 |  | breq2 | ⊢ ( 𝑖  =  suc  𝑎  →  ( ( 𝑗  ∩  𝑆 )  ≈  𝑖  ↔  ( 𝑗  ∩  𝑆 )  ≈  suc  𝑎 ) ) | 
						
							| 6 | 5 | rexbidv | ⊢ ( 𝑖  =  suc  𝑎  →  ( ∃ 𝑗  ∈  𝑆 ( 𝑗  ∩  𝑆 )  ≈  𝑖  ↔  ∃ 𝑗  ∈  𝑆 ( 𝑗  ∩  𝑆 )  ≈  suc  𝑎 ) ) | 
						
							| 7 |  | ordom | ⊢ Ord  ω | 
						
							| 8 |  | simpl | ⊢ ( ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin )  →  𝑆  ⊆  ω ) | 
						
							| 9 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 10 |  | eleq1 | ⊢ ( 𝑆  =  ∅  →  ( 𝑆  ∈  Fin  ↔  ∅  ∈  Fin ) ) | 
						
							| 11 | 9 10 | mpbiri | ⊢ ( 𝑆  =  ∅  →  𝑆  ∈  Fin ) | 
						
							| 12 | 11 | necon3bi | ⊢ ( ¬  𝑆  ∈  Fin  →  𝑆  ≠  ∅ ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin )  →  𝑆  ≠  ∅ ) | 
						
							| 14 |  | tz7.5 | ⊢ ( ( Ord  ω  ∧  𝑆  ⊆  ω  ∧  𝑆  ≠  ∅ )  →  ∃ 𝑗  ∈  𝑆 ( 𝑆  ∩  𝑗 )  =  ∅ ) | 
						
							| 15 | 7 8 13 14 | mp3an2i | ⊢ ( ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin )  →  ∃ 𝑗  ∈  𝑆 ( 𝑆  ∩  𝑗 )  =  ∅ ) | 
						
							| 16 |  | en0 | ⊢ ( ( 𝑗  ∩  𝑆 )  ≈  ∅  ↔  ( 𝑗  ∩  𝑆 )  =  ∅ ) | 
						
							| 17 |  | incom | ⊢ ( 𝑗  ∩  𝑆 )  =  ( 𝑆  ∩  𝑗 ) | 
						
							| 18 | 17 | eqeq1i | ⊢ ( ( 𝑗  ∩  𝑆 )  =  ∅  ↔  ( 𝑆  ∩  𝑗 )  =  ∅ ) | 
						
							| 19 | 16 18 | bitri | ⊢ ( ( 𝑗  ∩  𝑆 )  ≈  ∅  ↔  ( 𝑆  ∩  𝑗 )  =  ∅ ) | 
						
							| 20 | 19 | rexbii | ⊢ ( ∃ 𝑗  ∈  𝑆 ( 𝑗  ∩  𝑆 )  ≈  ∅  ↔  ∃ 𝑗  ∈  𝑆 ( 𝑆  ∩  𝑗 )  =  ∅ ) | 
						
							| 21 | 15 20 | sylibr | ⊢ ( ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin )  →  ∃ 𝑗  ∈  𝑆 ( 𝑗  ∩  𝑆 )  ≈  ∅ ) | 
						
							| 22 |  | simplrl | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  𝑆  ⊆  ω ) | 
						
							| 23 |  | omsson | ⊢ ω  ⊆  On | 
						
							| 24 | 22 23 | sstrdi | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  𝑆  ⊆  On ) | 
						
							| 25 | 24 | ssdifssd | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  ( 𝑆  ∖  suc  𝑗 )  ⊆  On ) | 
						
							| 26 |  | simplr | ⊢ ( ( ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin )  ∧  𝑗  ∈  𝑆 )  →  ¬  𝑆  ∈  Fin ) | 
						
							| 27 |  | ssel2 | ⊢ ( ( 𝑆  ⊆  ω  ∧  𝑗  ∈  𝑆 )  →  𝑗  ∈  ω ) | 
						
							| 28 |  | onfin2 | ⊢ ω  =  ( On  ∩  Fin ) | 
						
							| 29 |  | inss2 | ⊢ ( On  ∩  Fin )  ⊆  Fin | 
						
							| 30 | 28 29 | eqsstri | ⊢ ω  ⊆  Fin | 
						
							| 31 |  | peano2 | ⊢ ( 𝑗  ∈  ω  →  suc  𝑗  ∈  ω ) | 
						
							| 32 | 30 31 | sselid | ⊢ ( 𝑗  ∈  ω  →  suc  𝑗  ∈  Fin ) | 
						
							| 33 | 27 32 | syl | ⊢ ( ( 𝑆  ⊆  ω  ∧  𝑗  ∈  𝑆 )  →  suc  𝑗  ∈  Fin ) | 
						
							| 34 | 33 | adantlr | ⊢ ( ( ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin )  ∧  𝑗  ∈  𝑆 )  →  suc  𝑗  ∈  Fin ) | 
						
							| 35 |  | ssfi | ⊢ ( ( suc  𝑗  ∈  Fin  ∧  𝑆  ⊆  suc  𝑗 )  →  𝑆  ∈  Fin ) | 
						
							| 36 | 35 | ex | ⊢ ( suc  𝑗  ∈  Fin  →  ( 𝑆  ⊆  suc  𝑗  →  𝑆  ∈  Fin ) ) | 
						
							| 37 | 34 36 | syl | ⊢ ( ( ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin )  ∧  𝑗  ∈  𝑆 )  →  ( 𝑆  ⊆  suc  𝑗  →  𝑆  ∈  Fin ) ) | 
						
							| 38 | 26 37 | mtod | ⊢ ( ( ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin )  ∧  𝑗  ∈  𝑆 )  →  ¬  𝑆  ⊆  suc  𝑗 ) | 
						
							| 39 |  | ssdif0 | ⊢ ( 𝑆  ⊆  suc  𝑗  ↔  ( 𝑆  ∖  suc  𝑗 )  =  ∅ ) | 
						
							| 40 | 39 | necon3bbii | ⊢ ( ¬  𝑆  ⊆  suc  𝑗  ↔  ( 𝑆  ∖  suc  𝑗 )  ≠  ∅ ) | 
						
							| 41 | 38 40 | sylib | ⊢ ( ( ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin )  ∧  𝑗  ∈  𝑆 )  →  ( 𝑆  ∖  suc  𝑗 )  ≠  ∅ ) | 
						
							| 42 | 41 | ad2ant2lr | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  ( 𝑆  ∖  suc  𝑗 )  ≠  ∅ ) | 
						
							| 43 |  | onint | ⊢ ( ( ( 𝑆  ∖  suc  𝑗 )  ⊆  On  ∧  ( 𝑆  ∖  suc  𝑗 )  ≠  ∅ )  →  ∩  ( 𝑆  ∖  suc  𝑗 )  ∈  ( 𝑆  ∖  suc  𝑗 ) ) | 
						
							| 44 | 25 42 43 | syl2anc | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  ∩  ( 𝑆  ∖  suc  𝑗 )  ∈  ( 𝑆  ∖  suc  𝑗 ) ) | 
						
							| 45 | 44 | eldifad | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  ∩  ( 𝑆  ∖  suc  𝑗 )  ∈  𝑆 ) | 
						
							| 46 |  | simprr | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) | 
						
							| 47 |  | en2sn | ⊢ ( ( 𝑗  ∈  V  ∧  𝑎  ∈  V )  →  { 𝑗 }  ≈  { 𝑎 } ) | 
						
							| 48 | 47 | el2v | ⊢ { 𝑗 }  ≈  { 𝑎 } | 
						
							| 49 | 48 | a1i | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  { 𝑗 }  ≈  { 𝑎 } ) | 
						
							| 50 |  | simprl | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  𝑗  ∈  𝑆 ) | 
						
							| 51 | 22 50 | sseldd | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  𝑗  ∈  ω ) | 
						
							| 52 |  | nnord | ⊢ ( 𝑗  ∈  ω  →  Ord  𝑗 ) | 
						
							| 53 | 51 52 | syl | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  Ord  𝑗 ) | 
						
							| 54 |  | ordirr | ⊢ ( Ord  𝑗  →  ¬  𝑗  ∈  𝑗 ) | 
						
							| 55 |  | elinel1 | ⊢ ( 𝑗  ∈  ( 𝑗  ∩  𝑆 )  →  𝑗  ∈  𝑗 ) | 
						
							| 56 | 54 55 | nsyl | ⊢ ( Ord  𝑗  →  ¬  𝑗  ∈  ( 𝑗  ∩  𝑆 ) ) | 
						
							| 57 |  | disjsn | ⊢ ( ( ( 𝑗  ∩  𝑆 )  ∩  { 𝑗 } )  =  ∅  ↔  ¬  𝑗  ∈  ( 𝑗  ∩  𝑆 ) ) | 
						
							| 58 | 56 57 | sylibr | ⊢ ( Ord  𝑗  →  ( ( 𝑗  ∩  𝑆 )  ∩  { 𝑗 } )  =  ∅ ) | 
						
							| 59 | 53 58 | syl | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  ( ( 𝑗  ∩  𝑆 )  ∩  { 𝑗 } )  =  ∅ ) | 
						
							| 60 |  | nnord | ⊢ ( 𝑎  ∈  ω  →  Ord  𝑎 ) | 
						
							| 61 |  | ordirr | ⊢ ( Ord  𝑎  →  ¬  𝑎  ∈  𝑎 ) | 
						
							| 62 | 60 61 | syl | ⊢ ( 𝑎  ∈  ω  →  ¬  𝑎  ∈  𝑎 ) | 
						
							| 63 |  | disjsn | ⊢ ( ( 𝑎  ∩  { 𝑎 } )  =  ∅  ↔  ¬  𝑎  ∈  𝑎 ) | 
						
							| 64 | 62 63 | sylibr | ⊢ ( 𝑎  ∈  ω  →  ( 𝑎  ∩  { 𝑎 } )  =  ∅ ) | 
						
							| 65 | 64 | ad2antrr | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  ( 𝑎  ∩  { 𝑎 } )  =  ∅ ) | 
						
							| 66 |  | unen | ⊢ ( ( ( ( 𝑗  ∩  𝑆 )  ≈  𝑎  ∧  { 𝑗 }  ≈  { 𝑎 } )  ∧  ( ( ( 𝑗  ∩  𝑆 )  ∩  { 𝑗 } )  =  ∅  ∧  ( 𝑎  ∩  { 𝑎 } )  =  ∅ ) )  →  ( ( 𝑗  ∩  𝑆 )  ∪  { 𝑗 } )  ≈  ( 𝑎  ∪  { 𝑎 } ) ) | 
						
							| 67 | 46 49 59 65 66 | syl22anc | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  ( ( 𝑗  ∩  𝑆 )  ∪  { 𝑗 } )  ≈  ( 𝑎  ∪  { 𝑎 } ) ) | 
						
							| 68 |  | simprr | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 )  ∧  𝑏  ∈  𝑆 ) )  →  𝑏  ∈  𝑆 ) | 
						
							| 69 |  | simplrl | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 )  ∧  𝑏  ∈  𝑆 ) )  →  𝑆  ⊆  ω ) | 
						
							| 70 | 69 23 | sstrdi | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 )  ∧  𝑏  ∈  𝑆 ) )  →  𝑆  ⊆  On ) | 
						
							| 71 |  | ordsuc | ⊢ ( Ord  𝑗  ↔  Ord  suc  𝑗 ) | 
						
							| 72 | 53 71 | sylib | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  Ord  suc  𝑗 ) | 
						
							| 73 | 72 | adantrr | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 )  ∧  𝑏  ∈  𝑆 ) )  →  Ord  suc  𝑗 ) | 
						
							| 74 |  | simp2 | ⊢ ( ( 𝑏  ∈  𝑆  ∧  𝑆  ⊆  On  ∧  Ord  suc  𝑗 )  →  𝑆  ⊆  On ) | 
						
							| 75 | 74 | ssdifssd | ⊢ ( ( 𝑏  ∈  𝑆  ∧  𝑆  ⊆  On  ∧  Ord  suc  𝑗 )  →  ( 𝑆  ∖  suc  𝑗 )  ⊆  On ) | 
						
							| 76 |  | simpl1 | ⊢ ( ( ( 𝑏  ∈  𝑆  ∧  𝑆  ⊆  On  ∧  Ord  suc  𝑗 )  ∧  ¬  𝑏  ∈  suc  𝑗 )  →  𝑏  ∈  𝑆 ) | 
						
							| 77 |  | simpr | ⊢ ( ( ( 𝑏  ∈  𝑆  ∧  𝑆  ⊆  On  ∧  Ord  suc  𝑗 )  ∧  ¬  𝑏  ∈  suc  𝑗 )  →  ¬  𝑏  ∈  suc  𝑗 ) | 
						
							| 78 | 76 77 | eldifd | ⊢ ( ( ( 𝑏  ∈  𝑆  ∧  𝑆  ⊆  On  ∧  Ord  suc  𝑗 )  ∧  ¬  𝑏  ∈  suc  𝑗 )  →  𝑏  ∈  ( 𝑆  ∖  suc  𝑗 ) ) | 
						
							| 79 | 78 | ex | ⊢ ( ( 𝑏  ∈  𝑆  ∧  𝑆  ⊆  On  ∧  Ord  suc  𝑗 )  →  ( ¬  𝑏  ∈  suc  𝑗  →  𝑏  ∈  ( 𝑆  ∖  suc  𝑗 ) ) ) | 
						
							| 80 |  | onnmin | ⊢ ( ( ( 𝑆  ∖  suc  𝑗 )  ⊆  On  ∧  𝑏  ∈  ( 𝑆  ∖  suc  𝑗 ) )  →  ¬  𝑏  ∈  ∩  ( 𝑆  ∖  suc  𝑗 ) ) | 
						
							| 81 | 75 79 80 | syl6an | ⊢ ( ( 𝑏  ∈  𝑆  ∧  𝑆  ⊆  On  ∧  Ord  suc  𝑗 )  →  ( ¬  𝑏  ∈  suc  𝑗  →  ¬  𝑏  ∈  ∩  ( 𝑆  ∖  suc  𝑗 ) ) ) | 
						
							| 82 | 81 | con4d | ⊢ ( ( 𝑏  ∈  𝑆  ∧  𝑆  ⊆  On  ∧  Ord  suc  𝑗 )  →  ( 𝑏  ∈  ∩  ( 𝑆  ∖  suc  𝑗 )  →  𝑏  ∈  suc  𝑗 ) ) | 
						
							| 83 | 82 | imp | ⊢ ( ( ( 𝑏  ∈  𝑆  ∧  𝑆  ⊆  On  ∧  Ord  suc  𝑗 )  ∧  𝑏  ∈  ∩  ( 𝑆  ∖  suc  𝑗 ) )  →  𝑏  ∈  suc  𝑗 ) | 
						
							| 84 |  | simp3 | ⊢ ( ( 𝑏  ∈  𝑆  ∧  𝑆  ⊆  On  ∧  Ord  suc  𝑗 )  →  Ord  suc  𝑗 ) | 
						
							| 85 |  | ordsucss | ⊢ ( Ord  suc  𝑗  →  ( 𝑏  ∈  suc  𝑗  →  suc  𝑏  ⊆  suc  𝑗 ) ) | 
						
							| 86 | 84 85 | syl | ⊢ ( ( 𝑏  ∈  𝑆  ∧  𝑆  ⊆  On  ∧  Ord  suc  𝑗 )  →  ( 𝑏  ∈  suc  𝑗  →  suc  𝑏  ⊆  suc  𝑗 ) ) | 
						
							| 87 | 86 | imp | ⊢ ( ( ( 𝑏  ∈  𝑆  ∧  𝑆  ⊆  On  ∧  Ord  suc  𝑗 )  ∧  𝑏  ∈  suc  𝑗 )  →  suc  𝑏  ⊆  suc  𝑗 ) | 
						
							| 88 | 87 | sscond | ⊢ ( ( ( 𝑏  ∈  𝑆  ∧  𝑆  ⊆  On  ∧  Ord  suc  𝑗 )  ∧  𝑏  ∈  suc  𝑗 )  →  ( 𝑆  ∖  suc  𝑗 )  ⊆  ( 𝑆  ∖  suc  𝑏 ) ) | 
						
							| 89 |  | intss | ⊢ ( ( 𝑆  ∖  suc  𝑗 )  ⊆  ( 𝑆  ∖  suc  𝑏 )  →  ∩  ( 𝑆  ∖  suc  𝑏 )  ⊆  ∩  ( 𝑆  ∖  suc  𝑗 ) ) | 
						
							| 90 | 88 89 | syl | ⊢ ( ( ( 𝑏  ∈  𝑆  ∧  𝑆  ⊆  On  ∧  Ord  suc  𝑗 )  ∧  𝑏  ∈  suc  𝑗 )  →  ∩  ( 𝑆  ∖  suc  𝑏 )  ⊆  ∩  ( 𝑆  ∖  suc  𝑗 ) ) | 
						
							| 91 |  | simpl2 | ⊢ ( ( ( 𝑏  ∈  𝑆  ∧  𝑆  ⊆  On  ∧  Ord  suc  𝑗 )  ∧  𝑏  ∈  suc  𝑗 )  →  𝑆  ⊆  On ) | 
						
							| 92 |  | ordelon | ⊢ ( ( Ord  suc  𝑗  ∧  𝑏  ∈  suc  𝑗 )  →  𝑏  ∈  On ) | 
						
							| 93 | 84 92 | sylan | ⊢ ( ( ( 𝑏  ∈  𝑆  ∧  𝑆  ⊆  On  ∧  Ord  suc  𝑗 )  ∧  𝑏  ∈  suc  𝑗 )  →  𝑏  ∈  On ) | 
						
							| 94 |  | onmindif | ⊢ ( ( 𝑆  ⊆  On  ∧  𝑏  ∈  On )  →  𝑏  ∈  ∩  ( 𝑆  ∖  suc  𝑏 ) ) | 
						
							| 95 | 91 93 94 | syl2anc | ⊢ ( ( ( 𝑏  ∈  𝑆  ∧  𝑆  ⊆  On  ∧  Ord  suc  𝑗 )  ∧  𝑏  ∈  suc  𝑗 )  →  𝑏  ∈  ∩  ( 𝑆  ∖  suc  𝑏 ) ) | 
						
							| 96 | 90 95 | sseldd | ⊢ ( ( ( 𝑏  ∈  𝑆  ∧  𝑆  ⊆  On  ∧  Ord  suc  𝑗 )  ∧  𝑏  ∈  suc  𝑗 )  →  𝑏  ∈  ∩  ( 𝑆  ∖  suc  𝑗 ) ) | 
						
							| 97 | 83 96 | impbida | ⊢ ( ( 𝑏  ∈  𝑆  ∧  𝑆  ⊆  On  ∧  Ord  suc  𝑗 )  →  ( 𝑏  ∈  ∩  ( 𝑆  ∖  suc  𝑗 )  ↔  𝑏  ∈  suc  𝑗 ) ) | 
						
							| 98 | 68 70 73 97 | syl3anc | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 )  ∧  𝑏  ∈  𝑆 ) )  →  ( 𝑏  ∈  ∩  ( 𝑆  ∖  suc  𝑗 )  ↔  𝑏  ∈  suc  𝑗 ) ) | 
						
							| 99 |  | df-suc | ⊢ suc  𝑗  =  ( 𝑗  ∪  { 𝑗 } ) | 
						
							| 100 | 99 | eleq2i | ⊢ ( 𝑏  ∈  suc  𝑗  ↔  𝑏  ∈  ( 𝑗  ∪  { 𝑗 } ) ) | 
						
							| 101 | 98 100 | bitrdi | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 )  ∧  𝑏  ∈  𝑆 ) )  →  ( 𝑏  ∈  ∩  ( 𝑆  ∖  suc  𝑗 )  ↔  𝑏  ∈  ( 𝑗  ∪  { 𝑗 } ) ) ) | 
						
							| 102 | 101 | expr | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  ( 𝑏  ∈  𝑆  →  ( 𝑏  ∈  ∩  ( 𝑆  ∖  suc  𝑗 )  ↔  𝑏  ∈  ( 𝑗  ∪  { 𝑗 } ) ) ) ) | 
						
							| 103 | 102 | pm5.32rd | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  ( ( 𝑏  ∈  ∩  ( 𝑆  ∖  suc  𝑗 )  ∧  𝑏  ∈  𝑆 )  ↔  ( 𝑏  ∈  ( 𝑗  ∪  { 𝑗 } )  ∧  𝑏  ∈  𝑆 ) ) ) | 
						
							| 104 |  | elin | ⊢ ( 𝑏  ∈  ( ∩  ( 𝑆  ∖  suc  𝑗 )  ∩  𝑆 )  ↔  ( 𝑏  ∈  ∩  ( 𝑆  ∖  suc  𝑗 )  ∧  𝑏  ∈  𝑆 ) ) | 
						
							| 105 |  | elin | ⊢ ( 𝑏  ∈  ( ( 𝑗  ∪  { 𝑗 } )  ∩  𝑆 )  ↔  ( 𝑏  ∈  ( 𝑗  ∪  { 𝑗 } )  ∧  𝑏  ∈  𝑆 ) ) | 
						
							| 106 | 103 104 105 | 3bitr4g | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  ( 𝑏  ∈  ( ∩  ( 𝑆  ∖  suc  𝑗 )  ∩  𝑆 )  ↔  𝑏  ∈  ( ( 𝑗  ∪  { 𝑗 } )  ∩  𝑆 ) ) ) | 
						
							| 107 | 106 | eqrdv | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  ( ∩  ( 𝑆  ∖  suc  𝑗 )  ∩  𝑆 )  =  ( ( 𝑗  ∪  { 𝑗 } )  ∩  𝑆 ) ) | 
						
							| 108 |  | indir | ⊢ ( ( 𝑗  ∪  { 𝑗 } )  ∩  𝑆 )  =  ( ( 𝑗  ∩  𝑆 )  ∪  ( { 𝑗 }  ∩  𝑆 ) ) | 
						
							| 109 | 107 108 | eqtrdi | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  ( ∩  ( 𝑆  ∖  suc  𝑗 )  ∩  𝑆 )  =  ( ( 𝑗  ∩  𝑆 )  ∪  ( { 𝑗 }  ∩  𝑆 ) ) ) | 
						
							| 110 |  | snssi | ⊢ ( 𝑗  ∈  𝑆  →  { 𝑗 }  ⊆  𝑆 ) | 
						
							| 111 |  | dfss2 | ⊢ ( { 𝑗 }  ⊆  𝑆  ↔  ( { 𝑗 }  ∩  𝑆 )  =  { 𝑗 } ) | 
						
							| 112 | 110 111 | sylib | ⊢ ( 𝑗  ∈  𝑆  →  ( { 𝑗 }  ∩  𝑆 )  =  { 𝑗 } ) | 
						
							| 113 | 112 | uneq2d | ⊢ ( 𝑗  ∈  𝑆  →  ( ( 𝑗  ∩  𝑆 )  ∪  ( { 𝑗 }  ∩  𝑆 ) )  =  ( ( 𝑗  ∩  𝑆 )  ∪  { 𝑗 } ) ) | 
						
							| 114 | 113 | ad2antrl | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  ( ( 𝑗  ∩  𝑆 )  ∪  ( { 𝑗 }  ∩  𝑆 ) )  =  ( ( 𝑗  ∩  𝑆 )  ∪  { 𝑗 } ) ) | 
						
							| 115 | 109 114 | eqtrd | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  ( ∩  ( 𝑆  ∖  suc  𝑗 )  ∩  𝑆 )  =  ( ( 𝑗  ∩  𝑆 )  ∪  { 𝑗 } ) ) | 
						
							| 116 |  | df-suc | ⊢ suc  𝑎  =  ( 𝑎  ∪  { 𝑎 } ) | 
						
							| 117 | 116 | a1i | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  suc  𝑎  =  ( 𝑎  ∪  { 𝑎 } ) ) | 
						
							| 118 | 67 115 117 | 3brtr4d | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  ( ∩  ( 𝑆  ∖  suc  𝑗 )  ∩  𝑆 )  ≈  suc  𝑎 ) | 
						
							| 119 |  | ineq1 | ⊢ ( 𝑏  =  ∩  ( 𝑆  ∖  suc  𝑗 )  →  ( 𝑏  ∩  𝑆 )  =  ( ∩  ( 𝑆  ∖  suc  𝑗 )  ∩  𝑆 ) ) | 
						
							| 120 | 119 | breq1d | ⊢ ( 𝑏  =  ∩  ( 𝑆  ∖  suc  𝑗 )  →  ( ( 𝑏  ∩  𝑆 )  ≈  suc  𝑎  ↔  ( ∩  ( 𝑆  ∖  suc  𝑗 )  ∩  𝑆 )  ≈  suc  𝑎 ) ) | 
						
							| 121 | 120 | rspcev | ⊢ ( ( ∩  ( 𝑆  ∖  suc  𝑗 )  ∈  𝑆  ∧  ( ∩  ( 𝑆  ∖  suc  𝑗 )  ∩  𝑆 )  ≈  suc  𝑎 )  →  ∃ 𝑏  ∈  𝑆 ( 𝑏  ∩  𝑆 )  ≈  suc  𝑎 ) | 
						
							| 122 | 45 118 121 | syl2anc | ⊢ ( ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  ∧  ( 𝑗  ∈  𝑆  ∧  ( 𝑗  ∩  𝑆 )  ≈  𝑎 ) )  →  ∃ 𝑏  ∈  𝑆 ( 𝑏  ∩  𝑆 )  ≈  suc  𝑎 ) | 
						
							| 123 | 122 | rexlimdvaa | ⊢ ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  →  ( ∃ 𝑗  ∈  𝑆 ( 𝑗  ∩  𝑆 )  ≈  𝑎  →  ∃ 𝑏  ∈  𝑆 ( 𝑏  ∩  𝑆 )  ≈  suc  𝑎 ) ) | 
						
							| 124 |  | ineq1 | ⊢ ( 𝑏  =  𝑗  →  ( 𝑏  ∩  𝑆 )  =  ( 𝑗  ∩  𝑆 ) ) | 
						
							| 125 | 124 | breq1d | ⊢ ( 𝑏  =  𝑗  →  ( ( 𝑏  ∩  𝑆 )  ≈  suc  𝑎  ↔  ( 𝑗  ∩  𝑆 )  ≈  suc  𝑎 ) ) | 
						
							| 126 | 125 | cbvrexvw | ⊢ ( ∃ 𝑏  ∈  𝑆 ( 𝑏  ∩  𝑆 )  ≈  suc  𝑎  ↔  ∃ 𝑗  ∈  𝑆 ( 𝑗  ∩  𝑆 )  ≈  suc  𝑎 ) | 
						
							| 127 | 123 126 | imbitrdi | ⊢ ( ( 𝑎  ∈  ω  ∧  ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin ) )  →  ( ∃ 𝑗  ∈  𝑆 ( 𝑗  ∩  𝑆 )  ≈  𝑎  →  ∃ 𝑗  ∈  𝑆 ( 𝑗  ∩  𝑆 )  ≈  suc  𝑎 ) ) | 
						
							| 128 | 127 | ex | ⊢ ( 𝑎  ∈  ω  →  ( ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin )  →  ( ∃ 𝑗  ∈  𝑆 ( 𝑗  ∩  𝑆 )  ≈  𝑎  →  ∃ 𝑗  ∈  𝑆 ( 𝑗  ∩  𝑆 )  ≈  suc  𝑎 ) ) ) | 
						
							| 129 | 2 4 6 21 128 | finds2 | ⊢ ( 𝑖  ∈  ω  →  ( ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin )  →  ∃ 𝑗  ∈  𝑆 ( 𝑗  ∩  𝑆 )  ≈  𝑖 ) ) | 
						
							| 130 | 129 | impcom | ⊢ ( ( ( 𝑆  ⊆  ω  ∧  ¬  𝑆  ∈  Fin )  ∧  𝑖  ∈  ω )  →  ∃ 𝑗  ∈  𝑆 ( 𝑗  ∩  𝑆 )  ≈  𝑖 ) |