Metamath Proof Explorer


Theorem fin23lem26

Description: Lemma for fin23lem22 . (Contributed by Stefan O'Rear, 1-Nov-2014)

Ref Expression
Assertion fin23lem26 ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑖 ∈ ω ) → ∃ 𝑗𝑆 ( 𝑗𝑆 ) ≈ 𝑖 )

Proof

Step Hyp Ref Expression
1 breq2 ( 𝑖 = ∅ → ( ( 𝑗𝑆 ) ≈ 𝑖 ↔ ( 𝑗𝑆 ) ≈ ∅ ) )
2 1 rexbidv ( 𝑖 = ∅ → ( ∃ 𝑗𝑆 ( 𝑗𝑆 ) ≈ 𝑖 ↔ ∃ 𝑗𝑆 ( 𝑗𝑆 ) ≈ ∅ ) )
3 breq2 ( 𝑖 = 𝑎 → ( ( 𝑗𝑆 ) ≈ 𝑖 ↔ ( 𝑗𝑆 ) ≈ 𝑎 ) )
4 3 rexbidv ( 𝑖 = 𝑎 → ( ∃ 𝑗𝑆 ( 𝑗𝑆 ) ≈ 𝑖 ↔ ∃ 𝑗𝑆 ( 𝑗𝑆 ) ≈ 𝑎 ) )
5 breq2 ( 𝑖 = suc 𝑎 → ( ( 𝑗𝑆 ) ≈ 𝑖 ↔ ( 𝑗𝑆 ) ≈ suc 𝑎 ) )
6 5 rexbidv ( 𝑖 = suc 𝑎 → ( ∃ 𝑗𝑆 ( 𝑗𝑆 ) ≈ 𝑖 ↔ ∃ 𝑗𝑆 ( 𝑗𝑆 ) ≈ suc 𝑎 ) )
7 ordom Ord ω
8 simpl ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → 𝑆 ⊆ ω )
9 0fin ∅ ∈ Fin
10 eleq1 ( 𝑆 = ∅ → ( 𝑆 ∈ Fin ↔ ∅ ∈ Fin ) )
11 9 10 mpbiri ( 𝑆 = ∅ → 𝑆 ∈ Fin )
12 11 necon3bi ( ¬ 𝑆 ∈ Fin → 𝑆 ≠ ∅ )
13 12 adantl ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → 𝑆 ≠ ∅ )
14 tz7.5 ( ( Ord ω ∧ 𝑆 ⊆ ω ∧ 𝑆 ≠ ∅ ) → ∃ 𝑗𝑆 ( 𝑆𝑗 ) = ∅ )
15 7 8 13 14 mp3an2i ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → ∃ 𝑗𝑆 ( 𝑆𝑗 ) = ∅ )
16 en0 ( ( 𝑗𝑆 ) ≈ ∅ ↔ ( 𝑗𝑆 ) = ∅ )
17 incom ( 𝑗𝑆 ) = ( 𝑆𝑗 )
18 17 eqeq1i ( ( 𝑗𝑆 ) = ∅ ↔ ( 𝑆𝑗 ) = ∅ )
19 16 18 bitri ( ( 𝑗𝑆 ) ≈ ∅ ↔ ( 𝑆𝑗 ) = ∅ )
20 19 rexbii ( ∃ 𝑗𝑆 ( 𝑗𝑆 ) ≈ ∅ ↔ ∃ 𝑗𝑆 ( 𝑆𝑗 ) = ∅ )
21 15 20 sylibr ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → ∃ 𝑗𝑆 ( 𝑗𝑆 ) ≈ ∅ )
22 simplrl ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → 𝑆 ⊆ ω )
23 omsson ω ⊆ On
24 22 23 sstrdi ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → 𝑆 ⊆ On )
25 24 ssdifssd ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → ( 𝑆 ∖ suc 𝑗 ) ⊆ On )
26 simplr ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑗𝑆 ) → ¬ 𝑆 ∈ Fin )
27 ssel2 ( ( 𝑆 ⊆ ω ∧ 𝑗𝑆 ) → 𝑗 ∈ ω )
28 onfin2 ω = ( On ∩ Fin )
29 inss2 ( On ∩ Fin ) ⊆ Fin
30 28 29 eqsstri ω ⊆ Fin
31 peano2 ( 𝑗 ∈ ω → suc 𝑗 ∈ ω )
32 30 31 sselid ( 𝑗 ∈ ω → suc 𝑗 ∈ Fin )
33 27 32 syl ( ( 𝑆 ⊆ ω ∧ 𝑗𝑆 ) → suc 𝑗 ∈ Fin )
34 33 adantlr ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑗𝑆 ) → suc 𝑗 ∈ Fin )
35 ssfi ( ( suc 𝑗 ∈ Fin ∧ 𝑆 ⊆ suc 𝑗 ) → 𝑆 ∈ Fin )
36 35 ex ( suc 𝑗 ∈ Fin → ( 𝑆 ⊆ suc 𝑗𝑆 ∈ Fin ) )
37 34 36 syl ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑗𝑆 ) → ( 𝑆 ⊆ suc 𝑗𝑆 ∈ Fin ) )
38 26 37 mtod ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑗𝑆 ) → ¬ 𝑆 ⊆ suc 𝑗 )
39 ssdif0 ( 𝑆 ⊆ suc 𝑗 ↔ ( 𝑆 ∖ suc 𝑗 ) = ∅ )
40 39 necon3bbii ( ¬ 𝑆 ⊆ suc 𝑗 ↔ ( 𝑆 ∖ suc 𝑗 ) ≠ ∅ )
41 38 40 sylib ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑗𝑆 ) → ( 𝑆 ∖ suc 𝑗 ) ≠ ∅ )
42 41 ad2ant2lr ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → ( 𝑆 ∖ suc 𝑗 ) ≠ ∅ )
43 onint ( ( ( 𝑆 ∖ suc 𝑗 ) ⊆ On ∧ ( 𝑆 ∖ suc 𝑗 ) ≠ ∅ ) → ( 𝑆 ∖ suc 𝑗 ) ∈ ( 𝑆 ∖ suc 𝑗 ) )
44 25 42 43 syl2anc ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → ( 𝑆 ∖ suc 𝑗 ) ∈ ( 𝑆 ∖ suc 𝑗 ) )
45 44 eldifad ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → ( 𝑆 ∖ suc 𝑗 ) ∈ 𝑆 )
46 simprr ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → ( 𝑗𝑆 ) ≈ 𝑎 )
47 en2sn ( ( 𝑗 ∈ V ∧ 𝑎 ∈ V ) → { 𝑗 } ≈ { 𝑎 } )
48 47 el2v { 𝑗 } ≈ { 𝑎 }
49 48 a1i ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → { 𝑗 } ≈ { 𝑎 } )
50 simprl ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → 𝑗𝑆 )
51 22 50 sseldd ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → 𝑗 ∈ ω )
52 nnord ( 𝑗 ∈ ω → Ord 𝑗 )
53 51 52 syl ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → Ord 𝑗 )
54 ordirr ( Ord 𝑗 → ¬ 𝑗𝑗 )
55 elinel1 ( 𝑗 ∈ ( 𝑗𝑆 ) → 𝑗𝑗 )
56 54 55 nsyl ( Ord 𝑗 → ¬ 𝑗 ∈ ( 𝑗𝑆 ) )
57 disjsn ( ( ( 𝑗𝑆 ) ∩ { 𝑗 } ) = ∅ ↔ ¬ 𝑗 ∈ ( 𝑗𝑆 ) )
58 56 57 sylibr ( Ord 𝑗 → ( ( 𝑗𝑆 ) ∩ { 𝑗 } ) = ∅ )
59 53 58 syl ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → ( ( 𝑗𝑆 ) ∩ { 𝑗 } ) = ∅ )
60 nnord ( 𝑎 ∈ ω → Ord 𝑎 )
61 ordirr ( Ord 𝑎 → ¬ 𝑎𝑎 )
62 60 61 syl ( 𝑎 ∈ ω → ¬ 𝑎𝑎 )
63 disjsn ( ( 𝑎 ∩ { 𝑎 } ) = ∅ ↔ ¬ 𝑎𝑎 )
64 62 63 sylibr ( 𝑎 ∈ ω → ( 𝑎 ∩ { 𝑎 } ) = ∅ )
65 64 ad2antrr ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → ( 𝑎 ∩ { 𝑎 } ) = ∅ )
66 unen ( ( ( ( 𝑗𝑆 ) ≈ 𝑎 ∧ { 𝑗 } ≈ { 𝑎 } ) ∧ ( ( ( 𝑗𝑆 ) ∩ { 𝑗 } ) = ∅ ∧ ( 𝑎 ∩ { 𝑎 } ) = ∅ ) ) → ( ( 𝑗𝑆 ) ∪ { 𝑗 } ) ≈ ( 𝑎 ∪ { 𝑎 } ) )
67 46 49 59 65 66 syl22anc ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → ( ( 𝑗𝑆 ) ∪ { 𝑗 } ) ≈ ( 𝑎 ∪ { 𝑎 } ) )
68 simprr ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ∧ 𝑏𝑆 ) ) → 𝑏𝑆 )
69 simplrl ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ∧ 𝑏𝑆 ) ) → 𝑆 ⊆ ω )
70 69 23 sstrdi ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ∧ 𝑏𝑆 ) ) → 𝑆 ⊆ On )
71 ordsuc ( Ord 𝑗 ↔ Ord suc 𝑗 )
72 53 71 sylib ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → Ord suc 𝑗 )
73 72 adantrr ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ∧ 𝑏𝑆 ) ) → Ord suc 𝑗 )
74 simp2 ( ( 𝑏𝑆𝑆 ⊆ On ∧ Ord suc 𝑗 ) → 𝑆 ⊆ On )
75 74 ssdifssd ( ( 𝑏𝑆𝑆 ⊆ On ∧ Ord suc 𝑗 ) → ( 𝑆 ∖ suc 𝑗 ) ⊆ On )
76 simpl1 ( ( ( 𝑏𝑆𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ ¬ 𝑏 ∈ suc 𝑗 ) → 𝑏𝑆 )
77 simpr ( ( ( 𝑏𝑆𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ ¬ 𝑏 ∈ suc 𝑗 ) → ¬ 𝑏 ∈ suc 𝑗 )
78 76 77 eldifd ( ( ( 𝑏𝑆𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ ¬ 𝑏 ∈ suc 𝑗 ) → 𝑏 ∈ ( 𝑆 ∖ suc 𝑗 ) )
79 78 ex ( ( 𝑏𝑆𝑆 ⊆ On ∧ Ord suc 𝑗 ) → ( ¬ 𝑏 ∈ suc 𝑗𝑏 ∈ ( 𝑆 ∖ suc 𝑗 ) ) )
80 onnmin ( ( ( 𝑆 ∖ suc 𝑗 ) ⊆ On ∧ 𝑏 ∈ ( 𝑆 ∖ suc 𝑗 ) ) → ¬ 𝑏 ( 𝑆 ∖ suc 𝑗 ) )
81 75 79 80 syl6an ( ( 𝑏𝑆𝑆 ⊆ On ∧ Ord suc 𝑗 ) → ( ¬ 𝑏 ∈ suc 𝑗 → ¬ 𝑏 ( 𝑆 ∖ suc 𝑗 ) ) )
82 81 con4d ( ( 𝑏𝑆𝑆 ⊆ On ∧ Ord suc 𝑗 ) → ( 𝑏 ( 𝑆 ∖ suc 𝑗 ) → 𝑏 ∈ suc 𝑗 ) )
83 82 imp ( ( ( 𝑏𝑆𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ 𝑏 ( 𝑆 ∖ suc 𝑗 ) ) → 𝑏 ∈ suc 𝑗 )
84 simp3 ( ( 𝑏𝑆𝑆 ⊆ On ∧ Ord suc 𝑗 ) → Ord suc 𝑗 )
85 ordsucss ( Ord suc 𝑗 → ( 𝑏 ∈ suc 𝑗 → suc 𝑏 ⊆ suc 𝑗 ) )
86 84 85 syl ( ( 𝑏𝑆𝑆 ⊆ On ∧ Ord suc 𝑗 ) → ( 𝑏 ∈ suc 𝑗 → suc 𝑏 ⊆ suc 𝑗 ) )
87 86 imp ( ( ( 𝑏𝑆𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ 𝑏 ∈ suc 𝑗 ) → suc 𝑏 ⊆ suc 𝑗 )
88 87 sscond ( ( ( 𝑏𝑆𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ 𝑏 ∈ suc 𝑗 ) → ( 𝑆 ∖ suc 𝑗 ) ⊆ ( 𝑆 ∖ suc 𝑏 ) )
89 intss ( ( 𝑆 ∖ suc 𝑗 ) ⊆ ( 𝑆 ∖ suc 𝑏 ) → ( 𝑆 ∖ suc 𝑏 ) ⊆ ( 𝑆 ∖ suc 𝑗 ) )
90 88 89 syl ( ( ( 𝑏𝑆𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ 𝑏 ∈ suc 𝑗 ) → ( 𝑆 ∖ suc 𝑏 ) ⊆ ( 𝑆 ∖ suc 𝑗 ) )
91 simpl2 ( ( ( 𝑏𝑆𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ 𝑏 ∈ suc 𝑗 ) → 𝑆 ⊆ On )
92 ordelon ( ( Ord suc 𝑗𝑏 ∈ suc 𝑗 ) → 𝑏 ∈ On )
93 84 92 sylan ( ( ( 𝑏𝑆𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ 𝑏 ∈ suc 𝑗 ) → 𝑏 ∈ On )
94 onmindif ( ( 𝑆 ⊆ On ∧ 𝑏 ∈ On ) → 𝑏 ( 𝑆 ∖ suc 𝑏 ) )
95 91 93 94 syl2anc ( ( ( 𝑏𝑆𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ 𝑏 ∈ suc 𝑗 ) → 𝑏 ( 𝑆 ∖ suc 𝑏 ) )
96 90 95 sseldd ( ( ( 𝑏𝑆𝑆 ⊆ On ∧ Ord suc 𝑗 ) ∧ 𝑏 ∈ suc 𝑗 ) → 𝑏 ( 𝑆 ∖ suc 𝑗 ) )
97 83 96 impbida ( ( 𝑏𝑆𝑆 ⊆ On ∧ Ord suc 𝑗 ) → ( 𝑏 ( 𝑆 ∖ suc 𝑗 ) ↔ 𝑏 ∈ suc 𝑗 ) )
98 68 70 73 97 syl3anc ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ∧ 𝑏𝑆 ) ) → ( 𝑏 ( 𝑆 ∖ suc 𝑗 ) ↔ 𝑏 ∈ suc 𝑗 ) )
99 df-suc suc 𝑗 = ( 𝑗 ∪ { 𝑗 } )
100 99 eleq2i ( 𝑏 ∈ suc 𝑗𝑏 ∈ ( 𝑗 ∪ { 𝑗 } ) )
101 98 100 bitrdi ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ∧ 𝑏𝑆 ) ) → ( 𝑏 ( 𝑆 ∖ suc 𝑗 ) ↔ 𝑏 ∈ ( 𝑗 ∪ { 𝑗 } ) ) )
102 101 expr ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → ( 𝑏𝑆 → ( 𝑏 ( 𝑆 ∖ suc 𝑗 ) ↔ 𝑏 ∈ ( 𝑗 ∪ { 𝑗 } ) ) ) )
103 102 pm5.32rd ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → ( ( 𝑏 ( 𝑆 ∖ suc 𝑗 ) ∧ 𝑏𝑆 ) ↔ ( 𝑏 ∈ ( 𝑗 ∪ { 𝑗 } ) ∧ 𝑏𝑆 ) ) )
104 elin ( 𝑏 ∈ ( ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) ↔ ( 𝑏 ( 𝑆 ∖ suc 𝑗 ) ∧ 𝑏𝑆 ) )
105 elin ( 𝑏 ∈ ( ( 𝑗 ∪ { 𝑗 } ) ∩ 𝑆 ) ↔ ( 𝑏 ∈ ( 𝑗 ∪ { 𝑗 } ) ∧ 𝑏𝑆 ) )
106 103 104 105 3bitr4g ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → ( 𝑏 ∈ ( ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) ↔ 𝑏 ∈ ( ( 𝑗 ∪ { 𝑗 } ) ∩ 𝑆 ) ) )
107 106 eqrdv ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → ( ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) = ( ( 𝑗 ∪ { 𝑗 } ) ∩ 𝑆 ) )
108 indir ( ( 𝑗 ∪ { 𝑗 } ) ∩ 𝑆 ) = ( ( 𝑗𝑆 ) ∪ ( { 𝑗 } ∩ 𝑆 ) )
109 107 108 eqtrdi ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → ( ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) = ( ( 𝑗𝑆 ) ∪ ( { 𝑗 } ∩ 𝑆 ) ) )
110 snssi ( 𝑗𝑆 → { 𝑗 } ⊆ 𝑆 )
111 df-ss ( { 𝑗 } ⊆ 𝑆 ↔ ( { 𝑗 } ∩ 𝑆 ) = { 𝑗 } )
112 110 111 sylib ( 𝑗𝑆 → ( { 𝑗 } ∩ 𝑆 ) = { 𝑗 } )
113 112 uneq2d ( 𝑗𝑆 → ( ( 𝑗𝑆 ) ∪ ( { 𝑗 } ∩ 𝑆 ) ) = ( ( 𝑗𝑆 ) ∪ { 𝑗 } ) )
114 113 ad2antrl ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → ( ( 𝑗𝑆 ) ∪ ( { 𝑗 } ∩ 𝑆 ) ) = ( ( 𝑗𝑆 ) ∪ { 𝑗 } ) )
115 109 114 eqtrd ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → ( ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) = ( ( 𝑗𝑆 ) ∪ { 𝑗 } ) )
116 df-suc suc 𝑎 = ( 𝑎 ∪ { 𝑎 } )
117 116 a1i ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → suc 𝑎 = ( 𝑎 ∪ { 𝑎 } ) )
118 67 115 117 3brtr4d ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → ( ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) ≈ suc 𝑎 )
119 ineq1 ( 𝑏 = ( 𝑆 ∖ suc 𝑗 ) → ( 𝑏𝑆 ) = ( ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) )
120 119 breq1d ( 𝑏 = ( 𝑆 ∖ suc 𝑗 ) → ( ( 𝑏𝑆 ) ≈ suc 𝑎 ↔ ( ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) ≈ suc 𝑎 ) )
121 120 rspcev ( ( ( 𝑆 ∖ suc 𝑗 ) ∈ 𝑆 ∧ ( ( 𝑆 ∖ suc 𝑗 ) ∩ 𝑆 ) ≈ suc 𝑎 ) → ∃ 𝑏𝑆 ( 𝑏𝑆 ) ≈ suc 𝑎 )
122 45 118 121 syl2anc ( ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) ∧ ( 𝑗𝑆 ∧ ( 𝑗𝑆 ) ≈ 𝑎 ) ) → ∃ 𝑏𝑆 ( 𝑏𝑆 ) ≈ suc 𝑎 )
123 122 rexlimdvaa ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) → ( ∃ 𝑗𝑆 ( 𝑗𝑆 ) ≈ 𝑎 → ∃ 𝑏𝑆 ( 𝑏𝑆 ) ≈ suc 𝑎 ) )
124 ineq1 ( 𝑏 = 𝑗 → ( 𝑏𝑆 ) = ( 𝑗𝑆 ) )
125 124 breq1d ( 𝑏 = 𝑗 → ( ( 𝑏𝑆 ) ≈ suc 𝑎 ↔ ( 𝑗𝑆 ) ≈ suc 𝑎 ) )
126 125 cbvrexvw ( ∃ 𝑏𝑆 ( 𝑏𝑆 ) ≈ suc 𝑎 ↔ ∃ 𝑗𝑆 ( 𝑗𝑆 ) ≈ suc 𝑎 )
127 123 126 syl6ib ( ( 𝑎 ∈ ω ∧ ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ) → ( ∃ 𝑗𝑆 ( 𝑗𝑆 ) ≈ 𝑎 → ∃ 𝑗𝑆 ( 𝑗𝑆 ) ≈ suc 𝑎 ) )
128 127 ex ( 𝑎 ∈ ω → ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → ( ∃ 𝑗𝑆 ( 𝑗𝑆 ) ≈ 𝑎 → ∃ 𝑗𝑆 ( 𝑗𝑆 ) ≈ suc 𝑎 ) ) )
129 2 4 6 21 128 finds2 ( 𝑖 ∈ ω → ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) → ∃ 𝑗𝑆 ( 𝑗𝑆 ) ≈ 𝑖 ) )
130 129 impcom ( ( ( 𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin ) ∧ 𝑖 ∈ ω ) → ∃ 𝑗𝑆 ( 𝑗𝑆 ) ≈ 𝑖 )