Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem.a |
⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) |
2 |
|
fin23lem17.f |
⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } |
3 |
|
fin23lem.b |
⊢ 𝑃 = { 𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) } |
4 |
|
fin23lem.c |
⊢ 𝑄 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ 𝑃 ( 𝑥 ∩ 𝑃 ) ≈ 𝑤 ) ) |
5 |
|
fin23lem.d |
⊢ 𝑅 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ ( ω ∖ 𝑃 ) ( 𝑥 ∩ ( ω ∖ 𝑃 ) ) ≈ 𝑤 ) ) |
6 |
|
fin23lem.e |
⊢ 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) |
7 |
|
eqif |
⊢ ( 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ↔ ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡 ∘ 𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ) ) |
8 |
6 7
|
mpbi |
⊢ ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡 ∘ 𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ) |
9 |
|
difss |
⊢ ( ω ∖ 𝑃 ) ⊆ ω |
10 |
|
ominf |
⊢ ¬ ω ∈ Fin |
11 |
3
|
ssrab3 |
⊢ 𝑃 ⊆ ω |
12 |
|
undif |
⊢ ( 𝑃 ⊆ ω ↔ ( 𝑃 ∪ ( ω ∖ 𝑃 ) ) = ω ) |
13 |
11 12
|
mpbi |
⊢ ( 𝑃 ∪ ( ω ∖ 𝑃 ) ) = ω |
14 |
|
unfi |
⊢ ( ( 𝑃 ∈ Fin ∧ ( ω ∖ 𝑃 ) ∈ Fin ) → ( 𝑃 ∪ ( ω ∖ 𝑃 ) ) ∈ Fin ) |
15 |
13 14
|
eqeltrrid |
⊢ ( ( 𝑃 ∈ Fin ∧ ( ω ∖ 𝑃 ) ∈ Fin ) → ω ∈ Fin ) |
16 |
15
|
ex |
⊢ ( 𝑃 ∈ Fin → ( ( ω ∖ 𝑃 ) ∈ Fin → ω ∈ Fin ) ) |
17 |
10 16
|
mtoi |
⊢ ( 𝑃 ∈ Fin → ¬ ( ω ∖ 𝑃 ) ∈ Fin ) |
18 |
5
|
fin23lem22 |
⊢ ( ( ( ω ∖ 𝑃 ) ⊆ ω ∧ ¬ ( ω ∖ 𝑃 ) ∈ Fin ) → 𝑅 : ω –1-1-onto→ ( ω ∖ 𝑃 ) ) |
19 |
9 17 18
|
sylancr |
⊢ ( 𝑃 ∈ Fin → 𝑅 : ω –1-1-onto→ ( ω ∖ 𝑃 ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝑡 : ω –1-1→ V ∧ 𝑃 ∈ Fin ) → 𝑅 : ω –1-1-onto→ ( ω ∖ 𝑃 ) ) |
21 |
|
f1of1 |
⊢ ( 𝑅 : ω –1-1-onto→ ( ω ∖ 𝑃 ) → 𝑅 : ω –1-1→ ( ω ∖ 𝑃 ) ) |
22 |
|
f1ss |
⊢ ( ( 𝑅 : ω –1-1→ ( ω ∖ 𝑃 ) ∧ ( ω ∖ 𝑃 ) ⊆ ω ) → 𝑅 : ω –1-1→ ω ) |
23 |
9 22
|
mpan2 |
⊢ ( 𝑅 : ω –1-1→ ( ω ∖ 𝑃 ) → 𝑅 : ω –1-1→ ω ) |
24 |
20 21 23
|
3syl |
⊢ ( ( 𝑡 : ω –1-1→ V ∧ 𝑃 ∈ Fin ) → 𝑅 : ω –1-1→ ω ) |
25 |
|
f1co |
⊢ ( ( 𝑡 : ω –1-1→ V ∧ 𝑅 : ω –1-1→ ω ) → ( 𝑡 ∘ 𝑅 ) : ω –1-1→ V ) |
26 |
24 25
|
syldan |
⊢ ( ( 𝑡 : ω –1-1→ V ∧ 𝑃 ∈ Fin ) → ( 𝑡 ∘ 𝑅 ) : ω –1-1→ V ) |
27 |
|
f1eq1 |
⊢ ( 𝑍 = ( 𝑡 ∘ 𝑅 ) → ( 𝑍 : ω –1-1→ V ↔ ( 𝑡 ∘ 𝑅 ) : ω –1-1→ V ) ) |
28 |
26 27
|
syl5ibrcom |
⊢ ( ( 𝑡 : ω –1-1→ V ∧ 𝑃 ∈ Fin ) → ( 𝑍 = ( 𝑡 ∘ 𝑅 ) → 𝑍 : ω –1-1→ V ) ) |
29 |
28
|
impr |
⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡 ∘ 𝑅 ) ) ) → 𝑍 : ω –1-1→ V ) |
30 |
|
fvex |
⊢ ( 𝑡 ‘ 𝑧 ) ∈ V |
31 |
30
|
difexi |
⊢ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ∈ V |
32 |
31
|
rgenw |
⊢ ∀ 𝑧 ∈ 𝑃 ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ∈ V |
33 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) = ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) |
34 |
33
|
fmpt |
⊢ ( ∀ 𝑧 ∈ 𝑃 ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ∈ V ↔ ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) : 𝑃 ⟶ V ) |
35 |
32 34
|
mpbi |
⊢ ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) : 𝑃 ⟶ V |
36 |
35
|
a1i |
⊢ ( 𝑡 : ω –1-1→ V → ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) : 𝑃 ⟶ V ) |
37 |
|
fveq2 |
⊢ ( 𝑧 = 𝑎 → ( 𝑡 ‘ 𝑧 ) = ( 𝑡 ‘ 𝑎 ) ) |
38 |
37
|
difeq1d |
⊢ ( 𝑧 = 𝑎 → ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) = ( ( 𝑡 ‘ 𝑎 ) ∖ ∩ ran 𝑈 ) ) |
39 |
|
fvex |
⊢ ( 𝑡 ‘ 𝑎 ) ∈ V |
40 |
39
|
difexi |
⊢ ( ( 𝑡 ‘ 𝑎 ) ∖ ∩ ran 𝑈 ) ∈ V |
41 |
38 33 40
|
fvmpt |
⊢ ( 𝑎 ∈ 𝑃 → ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ‘ 𝑎 ) = ( ( 𝑡 ‘ 𝑎 ) ∖ ∩ ran 𝑈 ) ) |
42 |
41
|
ad2antrl |
⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ‘ 𝑎 ) = ( ( 𝑡 ‘ 𝑎 ) ∖ ∩ ran 𝑈 ) ) |
43 |
|
fveq2 |
⊢ ( 𝑧 = 𝑏 → ( 𝑡 ‘ 𝑧 ) = ( 𝑡 ‘ 𝑏 ) ) |
44 |
43
|
difeq1d |
⊢ ( 𝑧 = 𝑏 → ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) = ( ( 𝑡 ‘ 𝑏 ) ∖ ∩ ran 𝑈 ) ) |
45 |
|
fvex |
⊢ ( 𝑡 ‘ 𝑏 ) ∈ V |
46 |
45
|
difexi |
⊢ ( ( 𝑡 ‘ 𝑏 ) ∖ ∩ ran 𝑈 ) ∈ V |
47 |
44 33 46
|
fvmpt |
⊢ ( 𝑏 ∈ 𝑃 → ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ‘ 𝑏 ) = ( ( 𝑡 ‘ 𝑏 ) ∖ ∩ ran 𝑈 ) ) |
48 |
47
|
ad2antll |
⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ‘ 𝑏 ) = ( ( 𝑡 ‘ 𝑏 ) ∖ ∩ ran 𝑈 ) ) |
49 |
42 48
|
eqeq12d |
⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ‘ 𝑎 ) = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ‘ 𝑏 ) ↔ ( ( 𝑡 ‘ 𝑎 ) ∖ ∩ ran 𝑈 ) = ( ( 𝑡 ‘ 𝑏 ) ∖ ∩ ran 𝑈 ) ) ) |
50 |
|
uneq2 |
⊢ ( ( ( 𝑡 ‘ 𝑎 ) ∖ ∩ ran 𝑈 ) = ( ( 𝑡 ‘ 𝑏 ) ∖ ∩ ran 𝑈 ) → ( ∩ ran 𝑈 ∪ ( ( 𝑡 ‘ 𝑎 ) ∖ ∩ ran 𝑈 ) ) = ( ∩ ran 𝑈 ∪ ( ( 𝑡 ‘ 𝑏 ) ∖ ∩ ran 𝑈 ) ) ) |
51 |
|
fveq2 |
⊢ ( 𝑣 = 𝑎 → ( 𝑡 ‘ 𝑣 ) = ( 𝑡 ‘ 𝑎 ) ) |
52 |
51
|
sseq2d |
⊢ ( 𝑣 = 𝑎 → ( ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) ↔ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑎 ) ) ) |
53 |
52 3
|
elrab2 |
⊢ ( 𝑎 ∈ 𝑃 ↔ ( 𝑎 ∈ ω ∧ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑎 ) ) ) |
54 |
53
|
simprbi |
⊢ ( 𝑎 ∈ 𝑃 → ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑎 ) ) |
55 |
54
|
ad2antrl |
⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑎 ) ) |
56 |
|
undif |
⊢ ( ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑎 ) ↔ ( ∩ ran 𝑈 ∪ ( ( 𝑡 ‘ 𝑎 ) ∖ ∩ ran 𝑈 ) ) = ( 𝑡 ‘ 𝑎 ) ) |
57 |
55 56
|
sylib |
⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ∩ ran 𝑈 ∪ ( ( 𝑡 ‘ 𝑎 ) ∖ ∩ ran 𝑈 ) ) = ( 𝑡 ‘ 𝑎 ) ) |
58 |
|
fveq2 |
⊢ ( 𝑣 = 𝑏 → ( 𝑡 ‘ 𝑣 ) = ( 𝑡 ‘ 𝑏 ) ) |
59 |
58
|
sseq2d |
⊢ ( 𝑣 = 𝑏 → ( ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) ↔ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑏 ) ) ) |
60 |
59 3
|
elrab2 |
⊢ ( 𝑏 ∈ 𝑃 ↔ ( 𝑏 ∈ ω ∧ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑏 ) ) ) |
61 |
60
|
simprbi |
⊢ ( 𝑏 ∈ 𝑃 → ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑏 ) ) |
62 |
61
|
ad2antll |
⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑏 ) ) |
63 |
|
undif |
⊢ ( ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑏 ) ↔ ( ∩ ran 𝑈 ∪ ( ( 𝑡 ‘ 𝑏 ) ∖ ∩ ran 𝑈 ) ) = ( 𝑡 ‘ 𝑏 ) ) |
64 |
62 63
|
sylib |
⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ∩ ran 𝑈 ∪ ( ( 𝑡 ‘ 𝑏 ) ∖ ∩ ran 𝑈 ) ) = ( 𝑡 ‘ 𝑏 ) ) |
65 |
57 64
|
eqeq12d |
⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( ∩ ran 𝑈 ∪ ( ( 𝑡 ‘ 𝑎 ) ∖ ∩ ran 𝑈 ) ) = ( ∩ ran 𝑈 ∪ ( ( 𝑡 ‘ 𝑏 ) ∖ ∩ ran 𝑈 ) ) ↔ ( 𝑡 ‘ 𝑎 ) = ( 𝑡 ‘ 𝑏 ) ) ) |
66 |
50 65
|
syl5ib |
⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( ( 𝑡 ‘ 𝑎 ) ∖ ∩ ran 𝑈 ) = ( ( 𝑡 ‘ 𝑏 ) ∖ ∩ ran 𝑈 ) → ( 𝑡 ‘ 𝑎 ) = ( 𝑡 ‘ 𝑏 ) ) ) |
67 |
11
|
sseli |
⊢ ( 𝑎 ∈ 𝑃 → 𝑎 ∈ ω ) |
68 |
11
|
sseli |
⊢ ( 𝑏 ∈ 𝑃 → 𝑏 ∈ ω ) |
69 |
67 68
|
anim12i |
⊢ ( ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) → ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) |
70 |
|
f1fveq |
⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( ( 𝑡 ‘ 𝑎 ) = ( 𝑡 ‘ 𝑏 ) ↔ 𝑎 = 𝑏 ) ) |
71 |
69 70
|
sylan2 |
⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( 𝑡 ‘ 𝑎 ) = ( 𝑡 ‘ 𝑏 ) ↔ 𝑎 = 𝑏 ) ) |
72 |
66 71
|
sylibd |
⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( ( 𝑡 ‘ 𝑎 ) ∖ ∩ ran 𝑈 ) = ( ( 𝑡 ‘ 𝑏 ) ∖ ∩ ran 𝑈 ) → 𝑎 = 𝑏 ) ) |
73 |
49 72
|
sylbid |
⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ‘ 𝑎 ) = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
74 |
73
|
ralrimivva |
⊢ ( 𝑡 : ω –1-1→ V → ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ‘ 𝑎 ) = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) |
75 |
|
dff13 |
⊢ ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) : 𝑃 –1-1→ V ↔ ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) : 𝑃 ⟶ V ∧ ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ‘ 𝑎 ) = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) ) |
76 |
36 74 75
|
sylanbrc |
⊢ ( 𝑡 : ω –1-1→ V → ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) : 𝑃 –1-1→ V ) |
77 |
4
|
fin23lem22 |
⊢ ( ( 𝑃 ⊆ ω ∧ ¬ 𝑃 ∈ Fin ) → 𝑄 : ω –1-1-onto→ 𝑃 ) |
78 |
|
f1of1 |
⊢ ( 𝑄 : ω –1-1-onto→ 𝑃 → 𝑄 : ω –1-1→ 𝑃 ) |
79 |
77 78
|
syl |
⊢ ( ( 𝑃 ⊆ ω ∧ ¬ 𝑃 ∈ Fin ) → 𝑄 : ω –1-1→ 𝑃 ) |
80 |
11 79
|
mpan |
⊢ ( ¬ 𝑃 ∈ Fin → 𝑄 : ω –1-1→ 𝑃 ) |
81 |
|
f1co |
⊢ ( ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) : 𝑃 –1-1→ V ∧ 𝑄 : ω –1-1→ 𝑃 ) → ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) : ω –1-1→ V ) |
82 |
76 80 81
|
syl2an |
⊢ ( ( 𝑡 : ω –1-1→ V ∧ ¬ 𝑃 ∈ Fin ) → ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) : ω –1-1→ V ) |
83 |
|
f1eq1 |
⊢ ( 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) → ( 𝑍 : ω –1-1→ V ↔ ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) : ω –1-1→ V ) ) |
84 |
82 83
|
syl5ibrcom |
⊢ ( ( 𝑡 : ω –1-1→ V ∧ ¬ 𝑃 ∈ Fin ) → ( 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) → 𝑍 : ω –1-1→ V ) ) |
85 |
84
|
impr |
⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ) → 𝑍 : ω –1-1→ V ) |
86 |
29 85
|
jaodan |
⊢ ( ( 𝑡 : ω –1-1→ V ∧ ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡 ∘ 𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ) ) → 𝑍 : ω –1-1→ V ) |
87 |
8 86
|
mpan2 |
⊢ ( 𝑡 : ω –1-1→ V → 𝑍 : ω –1-1→ V ) |