Metamath Proof Explorer


Theorem fin23lem28

Description: Lemma for fin23 . The residual is also one-to-one. This preserves the induction invariant. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Hypotheses fin23lem.a 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡𝑖 ) ∩ 𝑢 ) ) ) , ran 𝑡 )
fin23lem17.f 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎𝑥 ) → ran 𝑎 ∈ ran 𝑎 ) }
fin23lem.b 𝑃 = { 𝑣 ∈ ω ∣ ran 𝑈 ⊆ ( 𝑡𝑣 ) }
fin23lem.c 𝑄 = ( 𝑤 ∈ ω ↦ ( 𝑥𝑃 ( 𝑥𝑃 ) ≈ 𝑤 ) )
fin23lem.d 𝑅 = ( 𝑤 ∈ ω ↦ ( 𝑥 ∈ ( ω ∖ 𝑃 ) ( 𝑥 ∩ ( ω ∖ 𝑃 ) ) ≈ 𝑤 ) )
fin23lem.e 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡𝑅 ) , ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) )
Assertion fin23lem28 ( 𝑡 : ω –1-1→ V → 𝑍 : ω –1-1→ V )

Proof

Step Hyp Ref Expression
1 fin23lem.a 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡𝑖 ) ∩ 𝑢 ) ) ) , ran 𝑡 )
2 fin23lem17.f 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎𝑥 ) → ran 𝑎 ∈ ran 𝑎 ) }
3 fin23lem.b 𝑃 = { 𝑣 ∈ ω ∣ ran 𝑈 ⊆ ( 𝑡𝑣 ) }
4 fin23lem.c 𝑄 = ( 𝑤 ∈ ω ↦ ( 𝑥𝑃 ( 𝑥𝑃 ) ≈ 𝑤 ) )
5 fin23lem.d 𝑅 = ( 𝑤 ∈ ω ↦ ( 𝑥 ∈ ( ω ∖ 𝑃 ) ( 𝑥 ∩ ( ω ∖ 𝑃 ) ) ≈ 𝑤 ) )
6 fin23lem.e 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡𝑅 ) , ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) )
7 eqif ( 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡𝑅 ) , ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ) ↔ ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ) ) )
8 6 7 mpbi ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ) )
9 difss ( ω ∖ 𝑃 ) ⊆ ω
10 ominf ¬ ω ∈ Fin
11 3 ssrab3 𝑃 ⊆ ω
12 undif ( 𝑃 ⊆ ω ↔ ( 𝑃 ∪ ( ω ∖ 𝑃 ) ) = ω )
13 11 12 mpbi ( 𝑃 ∪ ( ω ∖ 𝑃 ) ) = ω
14 unfi ( ( 𝑃 ∈ Fin ∧ ( ω ∖ 𝑃 ) ∈ Fin ) → ( 𝑃 ∪ ( ω ∖ 𝑃 ) ) ∈ Fin )
15 13 14 eqeltrrid ( ( 𝑃 ∈ Fin ∧ ( ω ∖ 𝑃 ) ∈ Fin ) → ω ∈ Fin )
16 15 ex ( 𝑃 ∈ Fin → ( ( ω ∖ 𝑃 ) ∈ Fin → ω ∈ Fin ) )
17 10 16 mtoi ( 𝑃 ∈ Fin → ¬ ( ω ∖ 𝑃 ) ∈ Fin )
18 5 fin23lem22 ( ( ( ω ∖ 𝑃 ) ⊆ ω ∧ ¬ ( ω ∖ 𝑃 ) ∈ Fin ) → 𝑅 : ω –1-1-onto→ ( ω ∖ 𝑃 ) )
19 9 17 18 sylancr ( 𝑃 ∈ Fin → 𝑅 : ω –1-1-onto→ ( ω ∖ 𝑃 ) )
20 19 adantl ( ( 𝑡 : ω –1-1→ V ∧ 𝑃 ∈ Fin ) → 𝑅 : ω –1-1-onto→ ( ω ∖ 𝑃 ) )
21 f1of1 ( 𝑅 : ω –1-1-onto→ ( ω ∖ 𝑃 ) → 𝑅 : ω –1-1→ ( ω ∖ 𝑃 ) )
22 f1ss ( ( 𝑅 : ω –1-1→ ( ω ∖ 𝑃 ) ∧ ( ω ∖ 𝑃 ) ⊆ ω ) → 𝑅 : ω –1-1→ ω )
23 9 22 mpan2 ( 𝑅 : ω –1-1→ ( ω ∖ 𝑃 ) → 𝑅 : ω –1-1→ ω )
24 20 21 23 3syl ( ( 𝑡 : ω –1-1→ V ∧ 𝑃 ∈ Fin ) → 𝑅 : ω –1-1→ ω )
25 f1co ( ( 𝑡 : ω –1-1→ V ∧ 𝑅 : ω –1-1→ ω ) → ( 𝑡𝑅 ) : ω –1-1→ V )
26 24 25 syldan ( ( 𝑡 : ω –1-1→ V ∧ 𝑃 ∈ Fin ) → ( 𝑡𝑅 ) : ω –1-1→ V )
27 f1eq1 ( 𝑍 = ( 𝑡𝑅 ) → ( 𝑍 : ω –1-1→ V ↔ ( 𝑡𝑅 ) : ω –1-1→ V ) )
28 26 27 syl5ibrcom ( ( 𝑡 : ω –1-1→ V ∧ 𝑃 ∈ Fin ) → ( 𝑍 = ( 𝑡𝑅 ) → 𝑍 : ω –1-1→ V ) )
29 28 impr ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡𝑅 ) ) ) → 𝑍 : ω –1-1→ V )
30 fvex ( 𝑡𝑧 ) ∈ V
31 30 difexi ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ∈ V
32 31 rgenw 𝑧𝑃 ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ∈ V
33 eqid ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) = ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) )
34 33 fmpt ( ∀ 𝑧𝑃 ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ∈ V ↔ ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) : 𝑃 ⟶ V )
35 32 34 mpbi ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) : 𝑃 ⟶ V
36 35 a1i ( 𝑡 : ω –1-1→ V → ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) : 𝑃 ⟶ V )
37 fveq2 ( 𝑧 = 𝑎 → ( 𝑡𝑧 ) = ( 𝑡𝑎 ) )
38 37 difeq1d ( 𝑧 = 𝑎 → ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) = ( ( 𝑡𝑎 ) ∖ ran 𝑈 ) )
39 fvex ( 𝑡𝑎 ) ∈ V
40 39 difexi ( ( 𝑡𝑎 ) ∖ ran 𝑈 ) ∈ V
41 38 33 40 fvmpt ( 𝑎𝑃 → ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ‘ 𝑎 ) = ( ( 𝑡𝑎 ) ∖ ran 𝑈 ) )
42 41 ad2antrl ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ‘ 𝑎 ) = ( ( 𝑡𝑎 ) ∖ ran 𝑈 ) )
43 fveq2 ( 𝑧 = 𝑏 → ( 𝑡𝑧 ) = ( 𝑡𝑏 ) )
44 43 difeq1d ( 𝑧 = 𝑏 → ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) = ( ( 𝑡𝑏 ) ∖ ran 𝑈 ) )
45 fvex ( 𝑡𝑏 ) ∈ V
46 45 difexi ( ( 𝑡𝑏 ) ∖ ran 𝑈 ) ∈ V
47 44 33 46 fvmpt ( 𝑏𝑃 → ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ‘ 𝑏 ) = ( ( 𝑡𝑏 ) ∖ ran 𝑈 ) )
48 47 ad2antll ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ‘ 𝑏 ) = ( ( 𝑡𝑏 ) ∖ ran 𝑈 ) )
49 42 48 eqeq12d ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ‘ 𝑎 ) = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ‘ 𝑏 ) ↔ ( ( 𝑡𝑎 ) ∖ ran 𝑈 ) = ( ( 𝑡𝑏 ) ∖ ran 𝑈 ) ) )
50 uneq2 ( ( ( 𝑡𝑎 ) ∖ ran 𝑈 ) = ( ( 𝑡𝑏 ) ∖ ran 𝑈 ) → ( ran 𝑈 ∪ ( ( 𝑡𝑎 ) ∖ ran 𝑈 ) ) = ( ran 𝑈 ∪ ( ( 𝑡𝑏 ) ∖ ran 𝑈 ) ) )
51 fveq2 ( 𝑣 = 𝑎 → ( 𝑡𝑣 ) = ( 𝑡𝑎 ) )
52 51 sseq2d ( 𝑣 = 𝑎 → ( ran 𝑈 ⊆ ( 𝑡𝑣 ) ↔ ran 𝑈 ⊆ ( 𝑡𝑎 ) ) )
53 52 3 elrab2 ( 𝑎𝑃 ↔ ( 𝑎 ∈ ω ∧ ran 𝑈 ⊆ ( 𝑡𝑎 ) ) )
54 53 simprbi ( 𝑎𝑃 ran 𝑈 ⊆ ( 𝑡𝑎 ) )
55 54 ad2antrl ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ran 𝑈 ⊆ ( 𝑡𝑎 ) )
56 undif ( ran 𝑈 ⊆ ( 𝑡𝑎 ) ↔ ( ran 𝑈 ∪ ( ( 𝑡𝑎 ) ∖ ran 𝑈 ) ) = ( 𝑡𝑎 ) )
57 55 56 sylib ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ran 𝑈 ∪ ( ( 𝑡𝑎 ) ∖ ran 𝑈 ) ) = ( 𝑡𝑎 ) )
58 fveq2 ( 𝑣 = 𝑏 → ( 𝑡𝑣 ) = ( 𝑡𝑏 ) )
59 58 sseq2d ( 𝑣 = 𝑏 → ( ran 𝑈 ⊆ ( 𝑡𝑣 ) ↔ ran 𝑈 ⊆ ( 𝑡𝑏 ) ) )
60 59 3 elrab2 ( 𝑏𝑃 ↔ ( 𝑏 ∈ ω ∧ ran 𝑈 ⊆ ( 𝑡𝑏 ) ) )
61 60 simprbi ( 𝑏𝑃 ran 𝑈 ⊆ ( 𝑡𝑏 ) )
62 61 ad2antll ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ran 𝑈 ⊆ ( 𝑡𝑏 ) )
63 undif ( ran 𝑈 ⊆ ( 𝑡𝑏 ) ↔ ( ran 𝑈 ∪ ( ( 𝑡𝑏 ) ∖ ran 𝑈 ) ) = ( 𝑡𝑏 ) )
64 62 63 sylib ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ran 𝑈 ∪ ( ( 𝑡𝑏 ) ∖ ran 𝑈 ) ) = ( 𝑡𝑏 ) )
65 57 64 eqeq12d ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ( ran 𝑈 ∪ ( ( 𝑡𝑎 ) ∖ ran 𝑈 ) ) = ( ran 𝑈 ∪ ( ( 𝑡𝑏 ) ∖ ran 𝑈 ) ) ↔ ( 𝑡𝑎 ) = ( 𝑡𝑏 ) ) )
66 50 65 syl5ib ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ( ( 𝑡𝑎 ) ∖ ran 𝑈 ) = ( ( 𝑡𝑏 ) ∖ ran 𝑈 ) → ( 𝑡𝑎 ) = ( 𝑡𝑏 ) ) )
67 11 sseli ( 𝑎𝑃𝑎 ∈ ω )
68 11 sseli ( 𝑏𝑃𝑏 ∈ ω )
69 67 68 anim12i ( ( 𝑎𝑃𝑏𝑃 ) → ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) )
70 f1fveq ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎 ∈ ω ∧ 𝑏 ∈ ω ) ) → ( ( 𝑡𝑎 ) = ( 𝑡𝑏 ) ↔ 𝑎 = 𝑏 ) )
71 69 70 sylan2 ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ( 𝑡𝑎 ) = ( 𝑡𝑏 ) ↔ 𝑎 = 𝑏 ) )
72 66 71 sylibd ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ( ( 𝑡𝑎 ) ∖ ran 𝑈 ) = ( ( 𝑡𝑏 ) ∖ ran 𝑈 ) → 𝑎 = 𝑏 ) )
73 49 72 sylbid ( ( 𝑡 : ω –1-1→ V ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ‘ 𝑎 ) = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) )
74 73 ralrimivva ( 𝑡 : ω –1-1→ V → ∀ 𝑎𝑃𝑏𝑃 ( ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ‘ 𝑎 ) = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) )
75 dff13 ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) : 𝑃1-1→ V ↔ ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) : 𝑃 ⟶ V ∧ ∀ 𝑎𝑃𝑏𝑃 ( ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ‘ 𝑎 ) = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ‘ 𝑏 ) → 𝑎 = 𝑏 ) ) )
76 36 74 75 sylanbrc ( 𝑡 : ω –1-1→ V → ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) : 𝑃1-1→ V )
77 4 fin23lem22 ( ( 𝑃 ⊆ ω ∧ ¬ 𝑃 ∈ Fin ) → 𝑄 : ω –1-1-onto𝑃 )
78 f1of1 ( 𝑄 : ω –1-1-onto𝑃𝑄 : ω –1-1𝑃 )
79 77 78 syl ( ( 𝑃 ⊆ ω ∧ ¬ 𝑃 ∈ Fin ) → 𝑄 : ω –1-1𝑃 )
80 11 79 mpan ( ¬ 𝑃 ∈ Fin → 𝑄 : ω –1-1𝑃 )
81 f1co ( ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) : 𝑃1-1→ V ∧ 𝑄 : ω –1-1𝑃 ) → ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) : ω –1-1→ V )
82 76 80 81 syl2an ( ( 𝑡 : ω –1-1→ V ∧ ¬ 𝑃 ∈ Fin ) → ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) : ω –1-1→ V )
83 f1eq1 ( 𝑍 = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) → ( 𝑍 : ω –1-1→ V ↔ ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) : ω –1-1→ V ) )
84 82 83 syl5ibrcom ( ( 𝑡 : ω –1-1→ V ∧ ¬ 𝑃 ∈ Fin ) → ( 𝑍 = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) → 𝑍 : ω –1-1→ V ) )
85 84 impr ( ( 𝑡 : ω –1-1→ V ∧ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ) ) → 𝑍 : ω –1-1→ V )
86 29 85 jaodan ( ( 𝑡 : ω –1-1→ V ∧ ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ) ) ) → 𝑍 : ω –1-1→ V )
87 8 86 mpan2 ( 𝑡 : ω –1-1→ V → 𝑍 : ω –1-1→ V )