Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem.a |
⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) |
2 |
|
fin23lem17.f |
⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } |
3 |
|
fin23lem.b |
⊢ 𝑃 = { 𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) } |
4 |
|
fin23lem.c |
⊢ 𝑄 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ 𝑃 ( 𝑥 ∩ 𝑃 ) ≈ 𝑤 ) ) |
5 |
|
fin23lem.d |
⊢ 𝑅 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ ( ω ∖ 𝑃 ) ( 𝑥 ∩ ( ω ∖ 𝑃 ) ) ≈ 𝑤 ) ) |
6 |
|
fin23lem.e |
⊢ 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) |
7 |
|
eqif |
⊢ ( 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ↔ ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡 ∘ 𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ) ) |
8 |
7
|
biimpi |
⊢ ( 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) → ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡 ∘ 𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ) ) |
9 |
|
rneq |
⊢ ( 𝑍 = ( 𝑡 ∘ 𝑅 ) → ran 𝑍 = ran ( 𝑡 ∘ 𝑅 ) ) |
10 |
9
|
unieqd |
⊢ ( 𝑍 = ( 𝑡 ∘ 𝑅 ) → ∪ ran 𝑍 = ∪ ran ( 𝑡 ∘ 𝑅 ) ) |
11 |
|
rncoss |
⊢ ran ( 𝑡 ∘ 𝑅 ) ⊆ ran 𝑡 |
12 |
11
|
unissi |
⊢ ∪ ran ( 𝑡 ∘ 𝑅 ) ⊆ ∪ ran 𝑡 |
13 |
10 12
|
eqsstrdi |
⊢ ( 𝑍 = ( 𝑡 ∘ 𝑅 ) → ∪ ran 𝑍 ⊆ ∪ ran 𝑡 ) |
14 |
13
|
adantl |
⊢ ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡 ∘ 𝑅 ) ) → ∪ ran 𝑍 ⊆ ∪ ran 𝑡 ) |
15 |
|
rneq |
⊢ ( 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) → ran 𝑍 = ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) |
16 |
15
|
unieqd |
⊢ ( 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) → ∪ ran 𝑍 = ∪ ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) |
17 |
|
rncoss |
⊢ ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ⊆ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) |
18 |
17
|
unissi |
⊢ ∪ ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ⊆ ∪ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) |
19 |
|
unissb |
⊢ ( ∪ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ⊆ ∪ ran 𝑡 ↔ ∀ 𝑎 ∈ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) 𝑎 ⊆ ∪ ran 𝑡 ) |
20 |
|
abid |
⊢ ( 𝑎 ∈ { 𝑎 ∣ ∃ 𝑧 ∈ 𝑃 𝑎 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) } ↔ ∃ 𝑧 ∈ 𝑃 𝑎 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) |
21 |
|
fvssunirn |
⊢ ( 𝑡 ‘ 𝑧 ) ⊆ ∪ ran 𝑡 |
22 |
21
|
a1i |
⊢ ( 𝑧 ∈ 𝑃 → ( 𝑡 ‘ 𝑧 ) ⊆ ∪ ran 𝑡 ) |
23 |
22
|
ssdifssd |
⊢ ( 𝑧 ∈ 𝑃 → ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ⊆ ∪ ran 𝑡 ) |
24 |
|
sseq1 |
⊢ ( 𝑎 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) → ( 𝑎 ⊆ ∪ ran 𝑡 ↔ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ⊆ ∪ ran 𝑡 ) ) |
25 |
23 24
|
syl5ibrcom |
⊢ ( 𝑧 ∈ 𝑃 → ( 𝑎 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) → 𝑎 ⊆ ∪ ran 𝑡 ) ) |
26 |
25
|
rexlimiv |
⊢ ( ∃ 𝑧 ∈ 𝑃 𝑎 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) → 𝑎 ⊆ ∪ ran 𝑡 ) |
27 |
20 26
|
sylbi |
⊢ ( 𝑎 ∈ { 𝑎 ∣ ∃ 𝑧 ∈ 𝑃 𝑎 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) } → 𝑎 ⊆ ∪ ran 𝑡 ) |
28 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) = ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) |
29 |
28
|
rnmpt |
⊢ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) = { 𝑎 ∣ ∃ 𝑧 ∈ 𝑃 𝑎 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) } |
30 |
27 29
|
eleq2s |
⊢ ( 𝑎 ∈ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) → 𝑎 ⊆ ∪ ran 𝑡 ) |
31 |
19 30
|
mprgbir |
⊢ ∪ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ⊆ ∪ ran 𝑡 |
32 |
18 31
|
sstri |
⊢ ∪ ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ⊆ ∪ ran 𝑡 |
33 |
16 32
|
eqsstrdi |
⊢ ( 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) → ∪ ran 𝑍 ⊆ ∪ ran 𝑡 ) |
34 |
33
|
adantl |
⊢ ( ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) → ∪ ran 𝑍 ⊆ ∪ ran 𝑡 ) |
35 |
14 34
|
jaoi |
⊢ ( ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡 ∘ 𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ) → ∪ ran 𝑍 ⊆ ∪ ran 𝑡 ) |
36 |
6 8 35
|
mp2b |
⊢ ∪ ran 𝑍 ⊆ ∪ ran 𝑡 |