Metamath Proof Explorer


Theorem fin23lem29

Description: Lemma for fin23 . The residual is built from the same elements as the previous sequence. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Hypotheses fin23lem.a 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡𝑖 ) ∩ 𝑢 ) ) ) , ran 𝑡 )
fin23lem17.f 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎𝑥 ) → ran 𝑎 ∈ ran 𝑎 ) }
fin23lem.b 𝑃 = { 𝑣 ∈ ω ∣ ran 𝑈 ⊆ ( 𝑡𝑣 ) }
fin23lem.c 𝑄 = ( 𝑤 ∈ ω ↦ ( 𝑥𝑃 ( 𝑥𝑃 ) ≈ 𝑤 ) )
fin23lem.d 𝑅 = ( 𝑤 ∈ ω ↦ ( 𝑥 ∈ ( ω ∖ 𝑃 ) ( 𝑥 ∩ ( ω ∖ 𝑃 ) ) ≈ 𝑤 ) )
fin23lem.e 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡𝑅 ) , ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) )
Assertion fin23lem29 ran 𝑍 ran 𝑡

Proof

Step Hyp Ref Expression
1 fin23lem.a 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡𝑖 ) ∩ 𝑢 ) ) ) , ran 𝑡 )
2 fin23lem17.f 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎𝑥 ) → ran 𝑎 ∈ ran 𝑎 ) }
3 fin23lem.b 𝑃 = { 𝑣 ∈ ω ∣ ran 𝑈 ⊆ ( 𝑡𝑣 ) }
4 fin23lem.c 𝑄 = ( 𝑤 ∈ ω ↦ ( 𝑥𝑃 ( 𝑥𝑃 ) ≈ 𝑤 ) )
5 fin23lem.d 𝑅 = ( 𝑤 ∈ ω ↦ ( 𝑥 ∈ ( ω ∖ 𝑃 ) ( 𝑥 ∩ ( ω ∖ 𝑃 ) ) ≈ 𝑤 ) )
6 fin23lem.e 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡𝑅 ) , ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) )
7 eqif ( 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡𝑅 ) , ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ) ↔ ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ) ) )
8 7 biimpi ( 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡𝑅 ) , ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ) → ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ) ) )
9 rneq ( 𝑍 = ( 𝑡𝑅 ) → ran 𝑍 = ran ( 𝑡𝑅 ) )
10 9 unieqd ( 𝑍 = ( 𝑡𝑅 ) → ran 𝑍 = ran ( 𝑡𝑅 ) )
11 rncoss ran ( 𝑡𝑅 ) ⊆ ran 𝑡
12 11 unissi ran ( 𝑡𝑅 ) ⊆ ran 𝑡
13 10 12 eqsstrdi ( 𝑍 = ( 𝑡𝑅 ) → ran 𝑍 ran 𝑡 )
14 13 adantl ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡𝑅 ) ) → ran 𝑍 ran 𝑡 )
15 rneq ( 𝑍 = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) → ran 𝑍 = ran ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) )
16 15 unieqd ( 𝑍 = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) → ran 𝑍 = ran ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) )
17 rncoss ran ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ⊆ ran ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) )
18 17 unissi ran ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ⊆ ran ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) )
19 unissb ( ran ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ⊆ ran 𝑡 ↔ ∀ 𝑎 ∈ ran ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) 𝑎 ran 𝑡 )
20 abid ( 𝑎 ∈ { 𝑎 ∣ ∃ 𝑧𝑃 𝑎 = ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) } ↔ ∃ 𝑧𝑃 𝑎 = ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) )
21 fvssunirn ( 𝑡𝑧 ) ⊆ ran 𝑡
22 21 a1i ( 𝑧𝑃 → ( 𝑡𝑧 ) ⊆ ran 𝑡 )
23 22 ssdifssd ( 𝑧𝑃 → ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ⊆ ran 𝑡 )
24 sseq1 ( 𝑎 = ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) → ( 𝑎 ran 𝑡 ↔ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ⊆ ran 𝑡 ) )
25 23 24 syl5ibrcom ( 𝑧𝑃 → ( 𝑎 = ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) → 𝑎 ran 𝑡 ) )
26 25 rexlimiv ( ∃ 𝑧𝑃 𝑎 = ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) → 𝑎 ran 𝑡 )
27 20 26 sylbi ( 𝑎 ∈ { 𝑎 ∣ ∃ 𝑧𝑃 𝑎 = ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) } → 𝑎 ran 𝑡 )
28 eqid ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) = ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) )
29 28 rnmpt ran ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) = { 𝑎 ∣ ∃ 𝑧𝑃 𝑎 = ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) }
30 27 29 eleq2s ( 𝑎 ∈ ran ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) → 𝑎 ran 𝑡 )
31 19 30 mprgbir ran ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ⊆ ran 𝑡
32 18 31 sstri ran ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ⊆ ran 𝑡
33 16 32 eqsstrdi ( 𝑍 = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) → ran 𝑍 ran 𝑡 )
34 33 adantl ( ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ) → ran 𝑍 ran 𝑡 )
35 14 34 jaoi ( ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) ) ) → ran 𝑍 ran 𝑡 )
36 6 8 35 mp2b ran 𝑍 ran 𝑡