Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem.a |
⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) |
2 |
|
fin23lem17.f |
⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } |
3 |
|
fin23lem.b |
⊢ 𝑃 = { 𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) } |
4 |
|
fin23lem.c |
⊢ 𝑄 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ 𝑃 ( 𝑥 ∩ 𝑃 ) ≈ 𝑤 ) ) |
5 |
|
fin23lem.d |
⊢ 𝑅 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ ( ω ∖ 𝑃 ) ( 𝑥 ∩ ( ω ∖ 𝑃 ) ) ≈ 𝑤 ) ) |
6 |
|
fin23lem.e |
⊢ 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) |
7 |
|
eqif |
⊢ ( 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ↔ ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡 ∘ 𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ) ) |
8 |
7
|
biimpi |
⊢ ( 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) → ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡 ∘ 𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ) ) |
9 |
|
simpr |
⊢ ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → Fun 𝑡 ) |
10 |
5
|
funmpt2 |
⊢ Fun 𝑅 |
11 |
|
funco |
⊢ ( ( Fun 𝑡 ∧ Fun 𝑅 ) → Fun ( 𝑡 ∘ 𝑅 ) ) |
12 |
9 10 11
|
sylancl |
⊢ ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → Fun ( 𝑡 ∘ 𝑅 ) ) |
13 |
|
elunirn |
⊢ ( Fun ( 𝑡 ∘ 𝑅 ) → ( 𝑎 ∈ ∪ ran ( 𝑡 ∘ 𝑅 ) ↔ ∃ 𝑏 ∈ dom ( 𝑡 ∘ 𝑅 ) 𝑎 ∈ ( ( 𝑡 ∘ 𝑅 ) ‘ 𝑏 ) ) ) |
14 |
12 13
|
syl |
⊢ ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → ( 𝑎 ∈ ∪ ran ( 𝑡 ∘ 𝑅 ) ↔ ∃ 𝑏 ∈ dom ( 𝑡 ∘ 𝑅 ) 𝑎 ∈ ( ( 𝑡 ∘ 𝑅 ) ‘ 𝑏 ) ) ) |
15 |
|
dmcoss |
⊢ dom ( 𝑡 ∘ 𝑅 ) ⊆ dom 𝑅 |
16 |
15
|
sseli |
⊢ ( 𝑏 ∈ dom ( 𝑡 ∘ 𝑅 ) → 𝑏 ∈ dom 𝑅 ) |
17 |
|
fvco |
⊢ ( ( Fun 𝑅 ∧ 𝑏 ∈ dom 𝑅 ) → ( ( 𝑡 ∘ 𝑅 ) ‘ 𝑏 ) = ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) |
18 |
10 17
|
mpan |
⊢ ( 𝑏 ∈ dom 𝑅 → ( ( 𝑡 ∘ 𝑅 ) ‘ 𝑏 ) = ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) |
19 |
18
|
adantl |
⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( ( 𝑡 ∘ 𝑅 ) ‘ 𝑏 ) = ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) |
20 |
19
|
eleq2d |
⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( 𝑎 ∈ ( ( 𝑡 ∘ 𝑅 ) ‘ 𝑏 ) ↔ 𝑎 ∈ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) ) |
21 |
|
incom |
⊢ ( ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ∩ ∩ ran 𝑈 ) = ( ∩ ran 𝑈 ∩ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) |
22 |
|
difss |
⊢ ( ω ∖ 𝑃 ) ⊆ ω |
23 |
|
ominf |
⊢ ¬ ω ∈ Fin |
24 |
3
|
ssrab3 |
⊢ 𝑃 ⊆ ω |
25 |
|
undif |
⊢ ( 𝑃 ⊆ ω ↔ ( 𝑃 ∪ ( ω ∖ 𝑃 ) ) = ω ) |
26 |
24 25
|
mpbi |
⊢ ( 𝑃 ∪ ( ω ∖ 𝑃 ) ) = ω |
27 |
|
unfi |
⊢ ( ( 𝑃 ∈ Fin ∧ ( ω ∖ 𝑃 ) ∈ Fin ) → ( 𝑃 ∪ ( ω ∖ 𝑃 ) ) ∈ Fin ) |
28 |
26 27
|
eqeltrrid |
⊢ ( ( 𝑃 ∈ Fin ∧ ( ω ∖ 𝑃 ) ∈ Fin ) → ω ∈ Fin ) |
29 |
28
|
ex |
⊢ ( 𝑃 ∈ Fin → ( ( ω ∖ 𝑃 ) ∈ Fin → ω ∈ Fin ) ) |
30 |
23 29
|
mtoi |
⊢ ( 𝑃 ∈ Fin → ¬ ( ω ∖ 𝑃 ) ∈ Fin ) |
31 |
30
|
ad2antrr |
⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ¬ ( ω ∖ 𝑃 ) ∈ Fin ) |
32 |
5
|
fin23lem22 |
⊢ ( ( ( ω ∖ 𝑃 ) ⊆ ω ∧ ¬ ( ω ∖ 𝑃 ) ∈ Fin ) → 𝑅 : ω –1-1-onto→ ( ω ∖ 𝑃 ) ) |
33 |
22 31 32
|
sylancr |
⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → 𝑅 : ω –1-1-onto→ ( ω ∖ 𝑃 ) ) |
34 |
|
f1of |
⊢ ( 𝑅 : ω –1-1-onto→ ( ω ∖ 𝑃 ) → 𝑅 : ω ⟶ ( ω ∖ 𝑃 ) ) |
35 |
33 34
|
syl |
⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → 𝑅 : ω ⟶ ( ω ∖ 𝑃 ) ) |
36 |
|
simpr |
⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → 𝑏 ∈ dom 𝑅 ) |
37 |
35
|
fdmd |
⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → dom 𝑅 = ω ) |
38 |
36 37
|
eleqtrd |
⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → 𝑏 ∈ ω ) |
39 |
35 38
|
ffvelrnd |
⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( 𝑅 ‘ 𝑏 ) ∈ ( ω ∖ 𝑃 ) ) |
40 |
39
|
eldifbd |
⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ¬ ( 𝑅 ‘ 𝑏 ) ∈ 𝑃 ) |
41 |
3
|
eleq2i |
⊢ ( ( 𝑅 ‘ 𝑏 ) ∈ 𝑃 ↔ ( 𝑅 ‘ 𝑏 ) ∈ { 𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) } ) |
42 |
40 41
|
sylnib |
⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ¬ ( 𝑅 ‘ 𝑏 ) ∈ { 𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) } ) |
43 |
39
|
eldifad |
⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( 𝑅 ‘ 𝑏 ) ∈ ω ) |
44 |
|
fveq2 |
⊢ ( 𝑣 = ( 𝑅 ‘ 𝑏 ) → ( 𝑡 ‘ 𝑣 ) = ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) |
45 |
44
|
sseq2d |
⊢ ( 𝑣 = ( 𝑅 ‘ 𝑏 ) → ( ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) ↔ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) ) |
46 |
45
|
elrab3 |
⊢ ( ( 𝑅 ‘ 𝑏 ) ∈ ω → ( ( 𝑅 ‘ 𝑏 ) ∈ { 𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) } ↔ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) ) |
47 |
43 46
|
syl |
⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( ( 𝑅 ‘ 𝑏 ) ∈ { 𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) } ↔ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) ) |
48 |
42 47
|
mtbid |
⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ¬ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) |
49 |
1
|
fin23lem20 |
⊢ ( ( 𝑅 ‘ 𝑏 ) ∈ ω → ( ∩ ran 𝑈 ⊆ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ∨ ( ∩ ran 𝑈 ∩ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) = ∅ ) ) |
50 |
43 49
|
syl |
⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( ∩ ran 𝑈 ⊆ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ∨ ( ∩ ran 𝑈 ∩ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) = ∅ ) ) |
51 |
|
orel1 |
⊢ ( ¬ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) → ( ( ∩ ran 𝑈 ⊆ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ∨ ( ∩ ran 𝑈 ∩ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) = ∅ ) → ( ∩ ran 𝑈 ∩ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) = ∅ ) ) |
52 |
48 50 51
|
sylc |
⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( ∩ ran 𝑈 ∩ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) = ∅ ) |
53 |
21 52
|
eqtrid |
⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ∩ ∩ ran 𝑈 ) = ∅ ) |
54 |
|
disj |
⊢ ( ( ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ∩ ∩ ran 𝑈 ) = ∅ ↔ ∀ 𝑎 ∈ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ¬ 𝑎 ∈ ∩ ran 𝑈 ) |
55 |
53 54
|
sylib |
⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ∀ 𝑎 ∈ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ¬ 𝑎 ∈ ∩ ran 𝑈 ) |
56 |
|
rsp |
⊢ ( ∀ 𝑎 ∈ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ¬ 𝑎 ∈ ∩ ran 𝑈 → ( 𝑎 ∈ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) → ¬ 𝑎 ∈ ∩ ran 𝑈 ) ) |
57 |
55 56
|
syl |
⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( 𝑎 ∈ ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) → ¬ 𝑎 ∈ ∩ ran 𝑈 ) ) |
58 |
20 57
|
sylbid |
⊢ ( ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) ∧ 𝑏 ∈ dom 𝑅 ) → ( 𝑎 ∈ ( ( 𝑡 ∘ 𝑅 ) ‘ 𝑏 ) → ¬ 𝑎 ∈ ∩ ran 𝑈 ) ) |
59 |
58
|
ex |
⊢ ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → ( 𝑏 ∈ dom 𝑅 → ( 𝑎 ∈ ( ( 𝑡 ∘ 𝑅 ) ‘ 𝑏 ) → ¬ 𝑎 ∈ ∩ ran 𝑈 ) ) ) |
60 |
16 59
|
syl5 |
⊢ ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → ( 𝑏 ∈ dom ( 𝑡 ∘ 𝑅 ) → ( 𝑎 ∈ ( ( 𝑡 ∘ 𝑅 ) ‘ 𝑏 ) → ¬ 𝑎 ∈ ∩ ran 𝑈 ) ) ) |
61 |
60
|
rexlimdv |
⊢ ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → ( ∃ 𝑏 ∈ dom ( 𝑡 ∘ 𝑅 ) 𝑎 ∈ ( ( 𝑡 ∘ 𝑅 ) ‘ 𝑏 ) → ¬ 𝑎 ∈ ∩ ran 𝑈 ) ) |
62 |
14 61
|
sylbid |
⊢ ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → ( 𝑎 ∈ ∪ ran ( 𝑡 ∘ 𝑅 ) → ¬ 𝑎 ∈ ∩ ran 𝑈 ) ) |
63 |
62
|
ralrimiv |
⊢ ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → ∀ 𝑎 ∈ ∪ ran ( 𝑡 ∘ 𝑅 ) ¬ 𝑎 ∈ ∩ ran 𝑈 ) |
64 |
|
disj |
⊢ ( ( ∪ ran ( 𝑡 ∘ 𝑅 ) ∩ ∩ ran 𝑈 ) = ∅ ↔ ∀ 𝑎 ∈ ∪ ran ( 𝑡 ∘ 𝑅 ) ¬ 𝑎 ∈ ∩ ran 𝑈 ) |
65 |
63 64
|
sylibr |
⊢ ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → ( ∪ ran ( 𝑡 ∘ 𝑅 ) ∩ ∩ ran 𝑈 ) = ∅ ) |
66 |
|
rneq |
⊢ ( 𝑍 = ( 𝑡 ∘ 𝑅 ) → ran 𝑍 = ran ( 𝑡 ∘ 𝑅 ) ) |
67 |
66
|
unieqd |
⊢ ( 𝑍 = ( 𝑡 ∘ 𝑅 ) → ∪ ran 𝑍 = ∪ ran ( 𝑡 ∘ 𝑅 ) ) |
68 |
67
|
ineq1d |
⊢ ( 𝑍 = ( 𝑡 ∘ 𝑅 ) → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ( ∪ ran ( 𝑡 ∘ 𝑅 ) ∩ ∩ ran 𝑈 ) ) |
69 |
68
|
eqeq1d |
⊢ ( 𝑍 = ( 𝑡 ∘ 𝑅 ) → ( ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ↔ ( ∪ ran ( 𝑡 ∘ 𝑅 ) ∩ ∩ ran 𝑈 ) = ∅ ) ) |
70 |
65 69
|
syl5ibr |
⊢ ( 𝑍 = ( 𝑡 ∘ 𝑅 ) → ( ( 𝑃 ∈ Fin ∧ Fun 𝑡 ) → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ) ) |
71 |
70
|
expd |
⊢ ( 𝑍 = ( 𝑡 ∘ 𝑅 ) → ( 𝑃 ∈ Fin → ( Fun 𝑡 → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ) ) ) |
72 |
71
|
impcom |
⊢ ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡 ∘ 𝑅 ) ) → ( Fun 𝑡 → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ) ) |
73 |
|
rneq |
⊢ ( 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) → ran 𝑍 = ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) |
74 |
73
|
unieqd |
⊢ ( 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) → ∪ ran 𝑍 = ∪ ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) |
75 |
74
|
ineq1d |
⊢ ( 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ( ∪ ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ∩ ∩ ran 𝑈 ) ) |
76 |
|
rncoss |
⊢ ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ⊆ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) |
77 |
76
|
unissi |
⊢ ∪ ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ⊆ ∪ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) |
78 |
|
disj |
⊢ ( ( ∪ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∩ ∩ ran 𝑈 ) = ∅ ↔ ∀ 𝑎 ∈ ∪ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ¬ 𝑎 ∈ ∩ ran 𝑈 ) |
79 |
|
eluniab |
⊢ ( 𝑎 ∈ ∪ { 𝑏 ∣ ∃ 𝑧 ∈ 𝑃 𝑏 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) } ↔ ∃ 𝑏 ( 𝑎 ∈ 𝑏 ∧ ∃ 𝑧 ∈ 𝑃 𝑏 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ) |
80 |
|
eleq2 |
⊢ ( 𝑏 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) → ( 𝑎 ∈ 𝑏 ↔ 𝑎 ∈ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ) |
81 |
|
eldifn |
⊢ ( 𝑎 ∈ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) → ¬ 𝑎 ∈ ∩ ran 𝑈 ) |
82 |
80 81
|
syl6bi |
⊢ ( 𝑏 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) → ( 𝑎 ∈ 𝑏 → ¬ 𝑎 ∈ ∩ ran 𝑈 ) ) |
83 |
82
|
rexlimivw |
⊢ ( ∃ 𝑧 ∈ 𝑃 𝑏 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) → ( 𝑎 ∈ 𝑏 → ¬ 𝑎 ∈ ∩ ran 𝑈 ) ) |
84 |
83
|
impcom |
⊢ ( ( 𝑎 ∈ 𝑏 ∧ ∃ 𝑧 ∈ 𝑃 𝑏 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) → ¬ 𝑎 ∈ ∩ ran 𝑈 ) |
85 |
84
|
exlimiv |
⊢ ( ∃ 𝑏 ( 𝑎 ∈ 𝑏 ∧ ∃ 𝑧 ∈ 𝑃 𝑏 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) → ¬ 𝑎 ∈ ∩ ran 𝑈 ) |
86 |
79 85
|
sylbi |
⊢ ( 𝑎 ∈ ∪ { 𝑏 ∣ ∃ 𝑧 ∈ 𝑃 𝑏 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) } → ¬ 𝑎 ∈ ∩ ran 𝑈 ) |
87 |
|
eqid |
⊢ ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) = ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) |
88 |
87
|
rnmpt |
⊢ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) = { 𝑏 ∣ ∃ 𝑧 ∈ 𝑃 𝑏 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) } |
89 |
88
|
unieqi |
⊢ ∪ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) = ∪ { 𝑏 ∣ ∃ 𝑧 ∈ 𝑃 𝑏 = ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) } |
90 |
86 89
|
eleq2s |
⊢ ( 𝑎 ∈ ∪ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) → ¬ 𝑎 ∈ ∩ ran 𝑈 ) |
91 |
78 90
|
mprgbir |
⊢ ( ∪ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∩ ∩ ran 𝑈 ) = ∅ |
92 |
|
ssdisj |
⊢ ( ( ∪ ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ⊆ ∪ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∧ ( ∪ ran ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∩ ∩ ran 𝑈 ) = ∅ ) → ( ∪ ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ∩ ∩ ran 𝑈 ) = ∅ ) |
93 |
77 91 92
|
mp2an |
⊢ ( ∪ ran ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ∩ ∩ ran 𝑈 ) = ∅ |
94 |
75 93
|
eqtrdi |
⊢ ( 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ) |
95 |
94
|
a1d |
⊢ ( 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) → ( Fun 𝑡 → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ) ) |
96 |
95
|
adantl |
⊢ ( ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) → ( Fun 𝑡 → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ) ) |
97 |
72 96
|
jaoi |
⊢ ( ( ( 𝑃 ∈ Fin ∧ 𝑍 = ( 𝑡 ∘ 𝑅 ) ) ∨ ( ¬ 𝑃 ∈ Fin ∧ 𝑍 = ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) ) → ( Fun 𝑡 → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ) ) |
98 |
6 8 97
|
mp2b |
⊢ ( Fun 𝑡 → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ) |