| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fin23lem.a | 
							⊢ 𝑈  =  seqω ( ( 𝑖  ∈  ω ,  𝑢  ∈  V  ↦  if ( ( ( 𝑡 ‘ 𝑖 )  ∩  𝑢 )  =  ∅ ,  𝑢 ,  ( ( 𝑡 ‘ 𝑖 )  ∩  𝑢 ) ) ) ,  ∪  ran  𝑡 )  | 
						
						
							| 2 | 
							
								
							 | 
							fin23lem17.f | 
							⊢ 𝐹  =  { 𝑔  ∣  ∀ 𝑎  ∈  ( 𝒫  𝑔  ↑m  ω ) ( ∀ 𝑥  ∈  ω ( 𝑎 ‘ suc  𝑥 )  ⊆  ( 𝑎 ‘ 𝑥 )  →  ∩  ran  𝑎  ∈  ran  𝑎 ) }  | 
						
						
							| 3 | 
							
								
							 | 
							fin23lem.b | 
							⊢ 𝑃  =  { 𝑣  ∈  ω  ∣  ∩  ran  𝑈  ⊆  ( 𝑡 ‘ 𝑣 ) }  | 
						
						
							| 4 | 
							
								
							 | 
							fin23lem.c | 
							⊢ 𝑄  =  ( 𝑤  ∈  ω  ↦  ( ℩ 𝑥  ∈  𝑃 ( 𝑥  ∩  𝑃 )  ≈  𝑤 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fin23lem.d | 
							⊢ 𝑅  =  ( 𝑤  ∈  ω  ↦  ( ℩ 𝑥  ∈  ( ω  ∖  𝑃 ) ( 𝑥  ∩  ( ω  ∖  𝑃 ) )  ≈  𝑤 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fin23lem.e | 
							⊢ 𝑍  =  if ( 𝑃  ∈  Fin ,  ( 𝑡  ∘  𝑅 ) ,  ( ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  ∘  𝑄 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							eqif | 
							⊢ ( 𝑍  =  if ( 𝑃  ∈  Fin ,  ( 𝑡  ∘  𝑅 ) ,  ( ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  ∘  𝑄 ) )  ↔  ( ( 𝑃  ∈  Fin  ∧  𝑍  =  ( 𝑡  ∘  𝑅 ) )  ∨  ( ¬  𝑃  ∈  Fin  ∧  𝑍  =  ( ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  ∘  𝑄 ) ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							biimpi | 
							⊢ ( 𝑍  =  if ( 𝑃  ∈  Fin ,  ( 𝑡  ∘  𝑅 ) ,  ( ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  ∘  𝑄 ) )  →  ( ( 𝑃  ∈  Fin  ∧  𝑍  =  ( 𝑡  ∘  𝑅 ) )  ∨  ( ¬  𝑃  ∈  Fin  ∧  𝑍  =  ( ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  ∘  𝑄 ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  →  Fun  𝑡 )  | 
						
						
							| 10 | 
							
								5
							 | 
							funmpt2 | 
							⊢ Fun  𝑅  | 
						
						
							| 11 | 
							
								
							 | 
							funco | 
							⊢ ( ( Fun  𝑡  ∧  Fun  𝑅 )  →  Fun  ( 𝑡  ∘  𝑅 ) )  | 
						
						
							| 12 | 
							
								9 10 11
							 | 
							sylancl | 
							⊢ ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  →  Fun  ( 𝑡  ∘  𝑅 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							elunirn | 
							⊢ ( Fun  ( 𝑡  ∘  𝑅 )  →  ( 𝑎  ∈  ∪  ran  ( 𝑡  ∘  𝑅 )  ↔  ∃ 𝑏  ∈  dom  ( 𝑡  ∘  𝑅 ) 𝑎  ∈  ( ( 𝑡  ∘  𝑅 ) ‘ 𝑏 ) ) )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							syl | 
							⊢ ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  →  ( 𝑎  ∈  ∪  ran  ( 𝑡  ∘  𝑅 )  ↔  ∃ 𝑏  ∈  dom  ( 𝑡  ∘  𝑅 ) 𝑎  ∈  ( ( 𝑡  ∘  𝑅 ) ‘ 𝑏 ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							dmcoss | 
							⊢ dom  ( 𝑡  ∘  𝑅 )  ⊆  dom  𝑅  | 
						
						
							| 16 | 
							
								15
							 | 
							sseli | 
							⊢ ( 𝑏  ∈  dom  ( 𝑡  ∘  𝑅 )  →  𝑏  ∈  dom  𝑅 )  | 
						
						
							| 17 | 
							
								
							 | 
							fvco | 
							⊢ ( ( Fun  𝑅  ∧  𝑏  ∈  dom  𝑅 )  →  ( ( 𝑡  ∘  𝑅 ) ‘ 𝑏 )  =  ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) )  | 
						
						
							| 18 | 
							
								10 17
							 | 
							mpan | 
							⊢ ( 𝑏  ∈  dom  𝑅  →  ( ( 𝑡  ∘  𝑅 ) ‘ 𝑏 )  =  ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							adantl | 
							⊢ ( ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  ∧  𝑏  ∈  dom  𝑅 )  →  ( ( 𝑡  ∘  𝑅 ) ‘ 𝑏 )  =  ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							eleq2d | 
							⊢ ( ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  ∧  𝑏  ∈  dom  𝑅 )  →  ( 𝑎  ∈  ( ( 𝑡  ∘  𝑅 ) ‘ 𝑏 )  ↔  𝑎  ∈  ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							incom | 
							⊢ ( ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) )  ∩  ∩  ran  𝑈 )  =  ( ∩  ran  𝑈  ∩  ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) )  | 
						
						
							| 22 | 
							
								
							 | 
							difss | 
							⊢ ( ω  ∖  𝑃 )  ⊆  ω  | 
						
						
							| 23 | 
							
								
							 | 
							ominf | 
							⊢ ¬  ω  ∈  Fin  | 
						
						
							| 24 | 
							
								3
							 | 
							ssrab3 | 
							⊢ 𝑃  ⊆  ω  | 
						
						
							| 25 | 
							
								
							 | 
							undif | 
							⊢ ( 𝑃  ⊆  ω  ↔  ( 𝑃  ∪  ( ω  ∖  𝑃 ) )  =  ω )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							mpbi | 
							⊢ ( 𝑃  ∪  ( ω  ∖  𝑃 ) )  =  ω  | 
						
						
							| 27 | 
							
								
							 | 
							unfi | 
							⊢ ( ( 𝑃  ∈  Fin  ∧  ( ω  ∖  𝑃 )  ∈  Fin )  →  ( 𝑃  ∪  ( ω  ∖  𝑃 ) )  ∈  Fin )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							eqeltrrid | 
							⊢ ( ( 𝑃  ∈  Fin  ∧  ( ω  ∖  𝑃 )  ∈  Fin )  →  ω  ∈  Fin )  | 
						
						
							| 29 | 
							
								28
							 | 
							ex | 
							⊢ ( 𝑃  ∈  Fin  →  ( ( ω  ∖  𝑃 )  ∈  Fin  →  ω  ∈  Fin ) )  | 
						
						
							| 30 | 
							
								23 29
							 | 
							mtoi | 
							⊢ ( 𝑃  ∈  Fin  →  ¬  ( ω  ∖  𝑃 )  ∈  Fin )  | 
						
						
							| 31 | 
							
								30
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  ∧  𝑏  ∈  dom  𝑅 )  →  ¬  ( ω  ∖  𝑃 )  ∈  Fin )  | 
						
						
							| 32 | 
							
								5
							 | 
							fin23lem22 | 
							⊢ ( ( ( ω  ∖  𝑃 )  ⊆  ω  ∧  ¬  ( ω  ∖  𝑃 )  ∈  Fin )  →  𝑅 : ω –1-1-onto→ ( ω  ∖  𝑃 ) )  | 
						
						
							| 33 | 
							
								22 31 32
							 | 
							sylancr | 
							⊢ ( ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  ∧  𝑏  ∈  dom  𝑅 )  →  𝑅 : ω –1-1-onto→ ( ω  ∖  𝑃 ) )  | 
						
						
							| 34 | 
							
								
							 | 
							f1of | 
							⊢ ( 𝑅 : ω –1-1-onto→ ( ω  ∖  𝑃 )  →  𝑅 : ω ⟶ ( ω  ∖  𝑃 ) )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							syl | 
							⊢ ( ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  ∧  𝑏  ∈  dom  𝑅 )  →  𝑅 : ω ⟶ ( ω  ∖  𝑃 ) )  | 
						
						
							| 36 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  ∧  𝑏  ∈  dom  𝑅 )  →  𝑏  ∈  dom  𝑅 )  | 
						
						
							| 37 | 
							
								35
							 | 
							fdmd | 
							⊢ ( ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  ∧  𝑏  ∈  dom  𝑅 )  →  dom  𝑅  =  ω )  | 
						
						
							| 38 | 
							
								36 37
							 | 
							eleqtrd | 
							⊢ ( ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  ∧  𝑏  ∈  dom  𝑅 )  →  𝑏  ∈  ω )  | 
						
						
							| 39 | 
							
								35 38
							 | 
							ffvelcdmd | 
							⊢ ( ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  ∧  𝑏  ∈  dom  𝑅 )  →  ( 𝑅 ‘ 𝑏 )  ∈  ( ω  ∖  𝑃 ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							eldifbd | 
							⊢ ( ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  ∧  𝑏  ∈  dom  𝑅 )  →  ¬  ( 𝑅 ‘ 𝑏 )  ∈  𝑃 )  | 
						
						
							| 41 | 
							
								3
							 | 
							eleq2i | 
							⊢ ( ( 𝑅 ‘ 𝑏 )  ∈  𝑃  ↔  ( 𝑅 ‘ 𝑏 )  ∈  { 𝑣  ∈  ω  ∣  ∩  ran  𝑈  ⊆  ( 𝑡 ‘ 𝑣 ) } )  | 
						
						
							| 42 | 
							
								40 41
							 | 
							sylnib | 
							⊢ ( ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  ∧  𝑏  ∈  dom  𝑅 )  →  ¬  ( 𝑅 ‘ 𝑏 )  ∈  { 𝑣  ∈  ω  ∣  ∩  ran  𝑈  ⊆  ( 𝑡 ‘ 𝑣 ) } )  | 
						
						
							| 43 | 
							
								39
							 | 
							eldifad | 
							⊢ ( ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  ∧  𝑏  ∈  dom  𝑅 )  →  ( 𝑅 ‘ 𝑏 )  ∈  ω )  | 
						
						
							| 44 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑣  =  ( 𝑅 ‘ 𝑏 )  →  ( 𝑡 ‘ 𝑣 )  =  ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							sseq2d | 
							⊢ ( 𝑣  =  ( 𝑅 ‘ 𝑏 )  →  ( ∩  ran  𝑈  ⊆  ( 𝑡 ‘ 𝑣 )  ↔  ∩  ran  𝑈  ⊆  ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							elrab3 | 
							⊢ ( ( 𝑅 ‘ 𝑏 )  ∈  ω  →  ( ( 𝑅 ‘ 𝑏 )  ∈  { 𝑣  ∈  ω  ∣  ∩  ran  𝑈  ⊆  ( 𝑡 ‘ 𝑣 ) }  ↔  ∩  ran  𝑈  ⊆  ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) )  | 
						
						
							| 47 | 
							
								43 46
							 | 
							syl | 
							⊢ ( ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  ∧  𝑏  ∈  dom  𝑅 )  →  ( ( 𝑅 ‘ 𝑏 )  ∈  { 𝑣  ∈  ω  ∣  ∩  ran  𝑈  ⊆  ( 𝑡 ‘ 𝑣 ) }  ↔  ∩  ran  𝑈  ⊆  ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ) )  | 
						
						
							| 48 | 
							
								42 47
							 | 
							mtbid | 
							⊢ ( ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  ∧  𝑏  ∈  dom  𝑅 )  →  ¬  ∩  ran  𝑈  ⊆  ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) )  | 
						
						
							| 49 | 
							
								1
							 | 
							fin23lem20 | 
							⊢ ( ( 𝑅 ‘ 𝑏 )  ∈  ω  →  ( ∩  ran  𝑈  ⊆  ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) )  ∨  ( ∩  ran  𝑈  ∩  ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) )  =  ∅ ) )  | 
						
						
							| 50 | 
							
								43 49
							 | 
							syl | 
							⊢ ( ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  ∧  𝑏  ∈  dom  𝑅 )  →  ( ∩  ran  𝑈  ⊆  ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) )  ∨  ( ∩  ran  𝑈  ∩  ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) )  =  ∅ ) )  | 
						
						
							| 51 | 
							
								
							 | 
							orel1 | 
							⊢ ( ¬  ∩  ran  𝑈  ⊆  ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) )  →  ( ( ∩  ran  𝑈  ⊆  ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) )  ∨  ( ∩  ran  𝑈  ∩  ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) )  =  ∅ )  →  ( ∩  ran  𝑈  ∩  ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) )  =  ∅ ) )  | 
						
						
							| 52 | 
							
								48 50 51
							 | 
							sylc | 
							⊢ ( ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  ∧  𝑏  ∈  dom  𝑅 )  →  ( ∩  ran  𝑈  ∩  ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) )  =  ∅ )  | 
						
						
							| 53 | 
							
								21 52
							 | 
							eqtrid | 
							⊢ ( ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  ∧  𝑏  ∈  dom  𝑅 )  →  ( ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) )  ∩  ∩  ran  𝑈 )  =  ∅ )  | 
						
						
							| 54 | 
							
								
							 | 
							disj | 
							⊢ ( ( ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) )  ∩  ∩  ran  𝑈 )  =  ∅  ↔  ∀ 𝑎  ∈  ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ¬  𝑎  ∈  ∩  ran  𝑈 )  | 
						
						
							| 55 | 
							
								53 54
							 | 
							sylib | 
							⊢ ( ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  ∧  𝑏  ∈  dom  𝑅 )  →  ∀ 𝑎  ∈  ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ¬  𝑎  ∈  ∩  ran  𝑈 )  | 
						
						
							| 56 | 
							
								
							 | 
							rsp | 
							⊢ ( ∀ 𝑎  ∈  ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) ) ¬  𝑎  ∈  ∩  ran  𝑈  →  ( 𝑎  ∈  ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) )  →  ¬  𝑎  ∈  ∩  ran  𝑈 ) )  | 
						
						
							| 57 | 
							
								55 56
							 | 
							syl | 
							⊢ ( ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  ∧  𝑏  ∈  dom  𝑅 )  →  ( 𝑎  ∈  ( 𝑡 ‘ ( 𝑅 ‘ 𝑏 ) )  →  ¬  𝑎  ∈  ∩  ran  𝑈 ) )  | 
						
						
							| 58 | 
							
								20 57
							 | 
							sylbid | 
							⊢ ( ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  ∧  𝑏  ∈  dom  𝑅 )  →  ( 𝑎  ∈  ( ( 𝑡  ∘  𝑅 ) ‘ 𝑏 )  →  ¬  𝑎  ∈  ∩  ran  𝑈 ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							ex | 
							⊢ ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  →  ( 𝑏  ∈  dom  𝑅  →  ( 𝑎  ∈  ( ( 𝑡  ∘  𝑅 ) ‘ 𝑏 )  →  ¬  𝑎  ∈  ∩  ran  𝑈 ) ) )  | 
						
						
							| 60 | 
							
								16 59
							 | 
							syl5 | 
							⊢ ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  →  ( 𝑏  ∈  dom  ( 𝑡  ∘  𝑅 )  →  ( 𝑎  ∈  ( ( 𝑡  ∘  𝑅 ) ‘ 𝑏 )  →  ¬  𝑎  ∈  ∩  ran  𝑈 ) ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							rexlimdv | 
							⊢ ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  →  ( ∃ 𝑏  ∈  dom  ( 𝑡  ∘  𝑅 ) 𝑎  ∈  ( ( 𝑡  ∘  𝑅 ) ‘ 𝑏 )  →  ¬  𝑎  ∈  ∩  ran  𝑈 ) )  | 
						
						
							| 62 | 
							
								14 61
							 | 
							sylbid | 
							⊢ ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  →  ( 𝑎  ∈  ∪  ran  ( 𝑡  ∘  𝑅 )  →  ¬  𝑎  ∈  ∩  ran  𝑈 ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							ralrimiv | 
							⊢ ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  →  ∀ 𝑎  ∈  ∪  ran  ( 𝑡  ∘  𝑅 ) ¬  𝑎  ∈  ∩  ran  𝑈 )  | 
						
						
							| 64 | 
							
								
							 | 
							disj | 
							⊢ ( ( ∪  ran  ( 𝑡  ∘  𝑅 )  ∩  ∩  ran  𝑈 )  =  ∅  ↔  ∀ 𝑎  ∈  ∪  ran  ( 𝑡  ∘  𝑅 ) ¬  𝑎  ∈  ∩  ran  𝑈 )  | 
						
						
							| 65 | 
							
								63 64
							 | 
							sylibr | 
							⊢ ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  →  ( ∪  ran  ( 𝑡  ∘  𝑅 )  ∩  ∩  ran  𝑈 )  =  ∅ )  | 
						
						
							| 66 | 
							
								
							 | 
							rneq | 
							⊢ ( 𝑍  =  ( 𝑡  ∘  𝑅 )  →  ran  𝑍  =  ran  ( 𝑡  ∘  𝑅 ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							unieqd | 
							⊢ ( 𝑍  =  ( 𝑡  ∘  𝑅 )  →  ∪  ran  𝑍  =  ∪  ran  ( 𝑡  ∘  𝑅 ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							ineq1d | 
							⊢ ( 𝑍  =  ( 𝑡  ∘  𝑅 )  →  ( ∪  ran  𝑍  ∩  ∩  ran  𝑈 )  =  ( ∪  ran  ( 𝑡  ∘  𝑅 )  ∩  ∩  ran  𝑈 ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							eqeq1d | 
							⊢ ( 𝑍  =  ( 𝑡  ∘  𝑅 )  →  ( ( ∪  ran  𝑍  ∩  ∩  ran  𝑈 )  =  ∅  ↔  ( ∪  ran  ( 𝑡  ∘  𝑅 )  ∩  ∩  ran  𝑈 )  =  ∅ ) )  | 
						
						
							| 70 | 
							
								65 69
							 | 
							imbitrrid | 
							⊢ ( 𝑍  =  ( 𝑡  ∘  𝑅 )  →  ( ( 𝑃  ∈  Fin  ∧  Fun  𝑡 )  →  ( ∪  ran  𝑍  ∩  ∩  ran  𝑈 )  =  ∅ ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							expd | 
							⊢ ( 𝑍  =  ( 𝑡  ∘  𝑅 )  →  ( 𝑃  ∈  Fin  →  ( Fun  𝑡  →  ( ∪  ran  𝑍  ∩  ∩  ran  𝑈 )  =  ∅ ) ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							impcom | 
							⊢ ( ( 𝑃  ∈  Fin  ∧  𝑍  =  ( 𝑡  ∘  𝑅 ) )  →  ( Fun  𝑡  →  ( ∪  ran  𝑍  ∩  ∩  ran  𝑈 )  =  ∅ ) )  | 
						
						
							| 73 | 
							
								
							 | 
							rneq | 
							⊢ ( 𝑍  =  ( ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  ∘  𝑄 )  →  ran  𝑍  =  ran  ( ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  ∘  𝑄 ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							unieqd | 
							⊢ ( 𝑍  =  ( ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  ∘  𝑄 )  →  ∪  ran  𝑍  =  ∪  ran  ( ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  ∘  𝑄 ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							ineq1d | 
							⊢ ( 𝑍  =  ( ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  ∘  𝑄 )  →  ( ∪  ran  𝑍  ∩  ∩  ran  𝑈 )  =  ( ∪  ran  ( ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  ∘  𝑄 )  ∩  ∩  ran  𝑈 ) )  | 
						
						
							| 76 | 
							
								
							 | 
							rncoss | 
							⊢ ran  ( ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  ∘  𝑄 )  ⊆  ran  ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							unissi | 
							⊢ ∪  ran  ( ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  ∘  𝑄 )  ⊆  ∪  ran  ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  | 
						
						
							| 78 | 
							
								
							 | 
							disj | 
							⊢ ( ( ∪  ran  ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  ∩  ∩  ran  𝑈 )  =  ∅  ↔  ∀ 𝑎  ∈  ∪  ran  ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) ) ¬  𝑎  ∈  ∩  ran  𝑈 )  | 
						
						
							| 79 | 
							
								
							 | 
							eluniab | 
							⊢ ( 𝑎  ∈  ∪  { 𝑏  ∣  ∃ 𝑧  ∈  𝑃 𝑏  =  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) }  ↔  ∃ 𝑏 ( 𝑎  ∈  𝑏  ∧  ∃ 𝑧  ∈  𝑃 𝑏  =  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) ) )  | 
						
						
							| 80 | 
							
								
							 | 
							eleq2 | 
							⊢ ( 𝑏  =  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 )  →  ( 𝑎  ∈  𝑏  ↔  𝑎  ∈  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) ) )  | 
						
						
							| 81 | 
							
								
							 | 
							eldifn | 
							⊢ ( 𝑎  ∈  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 )  →  ¬  𝑎  ∈  ∩  ran  𝑈 )  | 
						
						
							| 82 | 
							
								80 81
							 | 
							biimtrdi | 
							⊢ ( 𝑏  =  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 )  →  ( 𝑎  ∈  𝑏  →  ¬  𝑎  ∈  ∩  ran  𝑈 ) )  | 
						
						
							| 83 | 
							
								82
							 | 
							rexlimivw | 
							⊢ ( ∃ 𝑧  ∈  𝑃 𝑏  =  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 )  →  ( 𝑎  ∈  𝑏  →  ¬  𝑎  ∈  ∩  ran  𝑈 ) )  | 
						
						
							| 84 | 
							
								83
							 | 
							impcom | 
							⊢ ( ( 𝑎  ∈  𝑏  ∧  ∃ 𝑧  ∈  𝑃 𝑏  =  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  →  ¬  𝑎  ∈  ∩  ran  𝑈 )  | 
						
						
							| 85 | 
							
								84
							 | 
							exlimiv | 
							⊢ ( ∃ 𝑏 ( 𝑎  ∈  𝑏  ∧  ∃ 𝑧  ∈  𝑃 𝑏  =  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  →  ¬  𝑎  ∈  ∩  ran  𝑈 )  | 
						
						
							| 86 | 
							
								79 85
							 | 
							sylbi | 
							⊢ ( 𝑎  ∈  ∪  { 𝑏  ∣  ∃ 𝑧  ∈  𝑃 𝑏  =  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) }  →  ¬  𝑎  ∈  ∩  ran  𝑈 )  | 
						
						
							| 87 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  =  ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							rnmpt | 
							⊢ ran  ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  =  { 𝑏  ∣  ∃ 𝑧  ∈  𝑃 𝑏  =  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) }  | 
						
						
							| 89 | 
							
								88
							 | 
							unieqi | 
							⊢ ∪  ran  ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  =  ∪  { 𝑏  ∣  ∃ 𝑧  ∈  𝑃 𝑏  =  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) }  | 
						
						
							| 90 | 
							
								86 89
							 | 
							eleq2s | 
							⊢ ( 𝑎  ∈  ∪  ran  ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  →  ¬  𝑎  ∈  ∩  ran  𝑈 )  | 
						
						
							| 91 | 
							
								78 90
							 | 
							mprgbir | 
							⊢ ( ∪  ran  ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  ∩  ∩  ran  𝑈 )  =  ∅  | 
						
						
							| 92 | 
							
								
							 | 
							ssdisj | 
							⊢ ( ( ∪  ran  ( ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  ∘  𝑄 )  ⊆  ∪  ran  ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  ∧  ( ∪  ran  ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  ∩  ∩  ran  𝑈 )  =  ∅ )  →  ( ∪  ran  ( ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  ∘  𝑄 )  ∩  ∩  ran  𝑈 )  =  ∅ )  | 
						
						
							| 93 | 
							
								77 91 92
							 | 
							mp2an | 
							⊢ ( ∪  ran  ( ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  ∘  𝑄 )  ∩  ∩  ran  𝑈 )  =  ∅  | 
						
						
							| 94 | 
							
								75 93
							 | 
							eqtrdi | 
							⊢ ( 𝑍  =  ( ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  ∘  𝑄 )  →  ( ∪  ran  𝑍  ∩  ∩  ran  𝑈 )  =  ∅ )  | 
						
						
							| 95 | 
							
								94
							 | 
							a1d | 
							⊢ ( 𝑍  =  ( ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  ∘  𝑄 )  →  ( Fun  𝑡  →  ( ∪  ran  𝑍  ∩  ∩  ran  𝑈 )  =  ∅ ) )  | 
						
						
							| 96 | 
							
								95
							 | 
							adantl | 
							⊢ ( ( ¬  𝑃  ∈  Fin  ∧  𝑍  =  ( ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  ∘  𝑄 ) )  →  ( Fun  𝑡  →  ( ∪  ran  𝑍  ∩  ∩  ran  𝑈 )  =  ∅ ) )  | 
						
						
							| 97 | 
							
								72 96
							 | 
							jaoi | 
							⊢ ( ( ( 𝑃  ∈  Fin  ∧  𝑍  =  ( 𝑡  ∘  𝑅 ) )  ∨  ( ¬  𝑃  ∈  Fin  ∧  𝑍  =  ( ( 𝑧  ∈  𝑃  ↦  ( ( 𝑡 ‘ 𝑧 )  ∖  ∩  ran  𝑈 ) )  ∘  𝑄 ) ) )  →  ( Fun  𝑡  →  ( ∪  ran  𝑍  ∩  ∩  ran  𝑈 )  =  ∅ ) )  | 
						
						
							| 98 | 
							
								6 8 97
							 | 
							mp2b | 
							⊢ ( Fun  𝑡  →  ( ∪  ran  𝑍  ∩  ∩  ran  𝑈 )  =  ∅ )  |