Metamath Proof Explorer


Theorem fin23lem31

Description: Lemma for fin23 . The residual is has a strictly smaller range than the previous sequence. This will be iterated to build an unbounded chain. (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Hypotheses fin23lem.a 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡𝑖 ) ∩ 𝑢 ) ) ) , ran 𝑡 )
fin23lem17.f 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎𝑥 ) → ran 𝑎 ∈ ran 𝑎 ) }
fin23lem.b 𝑃 = { 𝑣 ∈ ω ∣ ran 𝑈 ⊆ ( 𝑡𝑣 ) }
fin23lem.c 𝑄 = ( 𝑤 ∈ ω ↦ ( 𝑥𝑃 ( 𝑥𝑃 ) ≈ 𝑤 ) )
fin23lem.d 𝑅 = ( 𝑤 ∈ ω ↦ ( 𝑥 ∈ ( ω ∖ 𝑃 ) ( 𝑥 ∩ ( ω ∖ 𝑃 ) ) ≈ 𝑤 ) )
fin23lem.e 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡𝑅 ) , ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) )
Assertion fin23lem31 ( ( 𝑡 : ω –1-1𝑉𝐺𝐹 ran 𝑡𝐺 ) → ran 𝑍 ran 𝑡 )

Proof

Step Hyp Ref Expression
1 fin23lem.a 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡𝑖 ) ∩ 𝑢 ) ) ) , ran 𝑡 )
2 fin23lem17.f 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎𝑥 ) → ran 𝑎 ∈ ran 𝑎 ) }
3 fin23lem.b 𝑃 = { 𝑣 ∈ ω ∣ ran 𝑈 ⊆ ( 𝑡𝑣 ) }
4 fin23lem.c 𝑄 = ( 𝑤 ∈ ω ↦ ( 𝑥𝑃 ( 𝑥𝑃 ) ≈ 𝑤 ) )
5 fin23lem.d 𝑅 = ( 𝑤 ∈ ω ↦ ( 𝑥 ∈ ( ω ∖ 𝑃 ) ( 𝑥 ∩ ( ω ∖ 𝑃 ) ) ≈ 𝑤 ) )
6 fin23lem.e 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡𝑅 ) , ( ( 𝑧𝑃 ↦ ( ( 𝑡𝑧 ) ∖ ran 𝑈 ) ) ∘ 𝑄 ) )
7 2 ssfin3ds ( ( 𝐺𝐹 ran 𝑡𝐺 ) → ran 𝑡𝐹 )
8 1 2 3 4 5 6 fin23lem29 ran 𝑍 ran 𝑡
9 8 a1i ( ( 𝑡 : ω –1-1𝑉 ran 𝑡𝐹 ) → ran 𝑍 ran 𝑡 )
10 1 2 fin23lem21 ( ( ran 𝑡𝐹𝑡 : ω –1-1𝑉 ) → ran 𝑈 ≠ ∅ )
11 10 ancoms ( ( 𝑡 : ω –1-1𝑉 ran 𝑡𝐹 ) → ran 𝑈 ≠ ∅ )
12 n0 ( ran 𝑈 ≠ ∅ ↔ ∃ 𝑎 𝑎 ran 𝑈 )
13 11 12 sylib ( ( 𝑡 : ω –1-1𝑉 ran 𝑡𝐹 ) → ∃ 𝑎 𝑎 ran 𝑈 )
14 1 fnseqom 𝑈 Fn ω
15 fndm ( 𝑈 Fn ω → dom 𝑈 = ω )
16 14 15 ax-mp dom 𝑈 = ω
17 peano1 ∅ ∈ ω
18 17 ne0ii ω ≠ ∅
19 16 18 eqnetri dom 𝑈 ≠ ∅
20 dm0rn0 ( dom 𝑈 = ∅ ↔ ran 𝑈 = ∅ )
21 20 necon3bii ( dom 𝑈 ≠ ∅ ↔ ran 𝑈 ≠ ∅ )
22 19 21 mpbi ran 𝑈 ≠ ∅
23 intssuni ( ran 𝑈 ≠ ∅ → ran 𝑈 ran 𝑈 )
24 22 23 ax-mp ran 𝑈 ran 𝑈
25 1 fin23lem16 ran 𝑈 = ran 𝑡
26 24 25 sseqtri ran 𝑈 ran 𝑡
27 26 sseli ( 𝑎 ran 𝑈𝑎 ran 𝑡 )
28 f1fun ( 𝑡 : ω –1-1𝑉 → Fun 𝑡 )
29 28 adantr ( ( 𝑡 : ω –1-1𝑉 ran 𝑡𝐹 ) → Fun 𝑡 )
30 1 2 3 4 5 6 fin23lem30 ( Fun 𝑡 → ( ran 𝑍 ran 𝑈 ) = ∅ )
31 29 30 syl ( ( 𝑡 : ω –1-1𝑉 ran 𝑡𝐹 ) → ( ran 𝑍 ran 𝑈 ) = ∅ )
32 disj ( ( ran 𝑍 ran 𝑈 ) = ∅ ↔ ∀ 𝑎 ran 𝑍 ¬ 𝑎 ran 𝑈 )
33 31 32 sylib ( ( 𝑡 : ω –1-1𝑉 ran 𝑡𝐹 ) → ∀ 𝑎 ran 𝑍 ¬ 𝑎 ran 𝑈 )
34 rsp ( ∀ 𝑎 ran 𝑍 ¬ 𝑎 ran 𝑈 → ( 𝑎 ran 𝑍 → ¬ 𝑎 ran 𝑈 ) )
35 33 34 syl ( ( 𝑡 : ω –1-1𝑉 ran 𝑡𝐹 ) → ( 𝑎 ran 𝑍 → ¬ 𝑎 ran 𝑈 ) )
36 35 con2d ( ( 𝑡 : ω –1-1𝑉 ran 𝑡𝐹 ) → ( 𝑎 ran 𝑈 → ¬ 𝑎 ran 𝑍 ) )
37 36 imp ( ( ( 𝑡 : ω –1-1𝑉 ran 𝑡𝐹 ) ∧ 𝑎 ran 𝑈 ) → ¬ 𝑎 ran 𝑍 )
38 nelne1 ( ( 𝑎 ran 𝑡 ∧ ¬ 𝑎 ran 𝑍 ) → ran 𝑡 ran 𝑍 )
39 27 37 38 syl2an2 ( ( ( 𝑡 : ω –1-1𝑉 ran 𝑡𝐹 ) ∧ 𝑎 ran 𝑈 ) → ran 𝑡 ran 𝑍 )
40 39 necomd ( ( ( 𝑡 : ω –1-1𝑉 ran 𝑡𝐹 ) ∧ 𝑎 ran 𝑈 ) → ran 𝑍 ran 𝑡 )
41 13 40 exlimddv ( ( 𝑡 : ω –1-1𝑉 ran 𝑡𝐹 ) → ran 𝑍 ran 𝑡 )
42 df-pss ( ran 𝑍 ran 𝑡 ↔ ( ran 𝑍 ran 𝑡 ran 𝑍 ran 𝑡 ) )
43 9 41 42 sylanbrc ( ( 𝑡 : ω –1-1𝑉 ran 𝑡𝐹 ) → ran 𝑍 ran 𝑡 )
44 7 43 sylan2 ( ( 𝑡 : ω –1-1𝑉 ∧ ( 𝐺𝐹 ran 𝑡𝐺 ) ) → ran 𝑍 ran 𝑡 )
45 44 3impb ( ( 𝑡 : ω –1-1𝑉𝐺𝐹 ran 𝑡𝐺 ) → ran 𝑍 ran 𝑡 )