Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem.a |
⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) |
2 |
|
fin23lem17.f |
⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } |
3 |
|
fin23lem.b |
⊢ 𝑃 = { 𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) } |
4 |
|
fin23lem.c |
⊢ 𝑄 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ 𝑃 ( 𝑥 ∩ 𝑃 ) ≈ 𝑤 ) ) |
5 |
|
fin23lem.d |
⊢ 𝑅 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ ( ω ∖ 𝑃 ) ( 𝑥 ∩ ( ω ∖ 𝑃 ) ) ≈ 𝑤 ) ) |
6 |
|
fin23lem.e |
⊢ 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) |
7 |
2
|
ssfin3ds |
⊢ ( ( 𝐺 ∈ 𝐹 ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ∪ ran 𝑡 ∈ 𝐹 ) |
8 |
1 2 3 4 5 6
|
fin23lem29 |
⊢ ∪ ran 𝑍 ⊆ ∪ ran 𝑡 |
9 |
8
|
a1i |
⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) → ∪ ran 𝑍 ⊆ ∪ ran 𝑡 ) |
10 |
1 2
|
fin23lem21 |
⊢ ( ( ∪ ran 𝑡 ∈ 𝐹 ∧ 𝑡 : ω –1-1→ 𝑉 ) → ∩ ran 𝑈 ≠ ∅ ) |
11 |
10
|
ancoms |
⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) → ∩ ran 𝑈 ≠ ∅ ) |
12 |
|
n0 |
⊢ ( ∩ ran 𝑈 ≠ ∅ ↔ ∃ 𝑎 𝑎 ∈ ∩ ran 𝑈 ) |
13 |
11 12
|
sylib |
⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) → ∃ 𝑎 𝑎 ∈ ∩ ran 𝑈 ) |
14 |
1
|
fnseqom |
⊢ 𝑈 Fn ω |
15 |
|
fndm |
⊢ ( 𝑈 Fn ω → dom 𝑈 = ω ) |
16 |
14 15
|
ax-mp |
⊢ dom 𝑈 = ω |
17 |
|
peano1 |
⊢ ∅ ∈ ω |
18 |
17
|
ne0ii |
⊢ ω ≠ ∅ |
19 |
16 18
|
eqnetri |
⊢ dom 𝑈 ≠ ∅ |
20 |
|
dm0rn0 |
⊢ ( dom 𝑈 = ∅ ↔ ran 𝑈 = ∅ ) |
21 |
20
|
necon3bii |
⊢ ( dom 𝑈 ≠ ∅ ↔ ran 𝑈 ≠ ∅ ) |
22 |
19 21
|
mpbi |
⊢ ran 𝑈 ≠ ∅ |
23 |
|
intssuni |
⊢ ( ran 𝑈 ≠ ∅ → ∩ ran 𝑈 ⊆ ∪ ran 𝑈 ) |
24 |
22 23
|
ax-mp |
⊢ ∩ ran 𝑈 ⊆ ∪ ran 𝑈 |
25 |
1
|
fin23lem16 |
⊢ ∪ ran 𝑈 = ∪ ran 𝑡 |
26 |
24 25
|
sseqtri |
⊢ ∩ ran 𝑈 ⊆ ∪ ran 𝑡 |
27 |
26
|
sseli |
⊢ ( 𝑎 ∈ ∩ ran 𝑈 → 𝑎 ∈ ∪ ran 𝑡 ) |
28 |
|
f1fun |
⊢ ( 𝑡 : ω –1-1→ 𝑉 → Fun 𝑡 ) |
29 |
28
|
adantr |
⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) → Fun 𝑡 ) |
30 |
1 2 3 4 5 6
|
fin23lem30 |
⊢ ( Fun 𝑡 → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ) |
31 |
29 30
|
syl |
⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) → ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ) |
32 |
|
disj |
⊢ ( ( ∪ ran 𝑍 ∩ ∩ ran 𝑈 ) = ∅ ↔ ∀ 𝑎 ∈ ∪ ran 𝑍 ¬ 𝑎 ∈ ∩ ran 𝑈 ) |
33 |
31 32
|
sylib |
⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) → ∀ 𝑎 ∈ ∪ ran 𝑍 ¬ 𝑎 ∈ ∩ ran 𝑈 ) |
34 |
|
rsp |
⊢ ( ∀ 𝑎 ∈ ∪ ran 𝑍 ¬ 𝑎 ∈ ∩ ran 𝑈 → ( 𝑎 ∈ ∪ ran 𝑍 → ¬ 𝑎 ∈ ∩ ran 𝑈 ) ) |
35 |
33 34
|
syl |
⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) → ( 𝑎 ∈ ∪ ran 𝑍 → ¬ 𝑎 ∈ ∩ ran 𝑈 ) ) |
36 |
35
|
con2d |
⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) → ( 𝑎 ∈ ∩ ran 𝑈 → ¬ 𝑎 ∈ ∪ ran 𝑍 ) ) |
37 |
36
|
imp |
⊢ ( ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) ∧ 𝑎 ∈ ∩ ran 𝑈 ) → ¬ 𝑎 ∈ ∪ ran 𝑍 ) |
38 |
|
nelne1 |
⊢ ( ( 𝑎 ∈ ∪ ran 𝑡 ∧ ¬ 𝑎 ∈ ∪ ran 𝑍 ) → ∪ ran 𝑡 ≠ ∪ ran 𝑍 ) |
39 |
27 37 38
|
syl2an2 |
⊢ ( ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) ∧ 𝑎 ∈ ∩ ran 𝑈 ) → ∪ ran 𝑡 ≠ ∪ ran 𝑍 ) |
40 |
39
|
necomd |
⊢ ( ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) ∧ 𝑎 ∈ ∩ ran 𝑈 ) → ∪ ran 𝑍 ≠ ∪ ran 𝑡 ) |
41 |
13 40
|
exlimddv |
⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) → ∪ ran 𝑍 ≠ ∪ ran 𝑡 ) |
42 |
|
df-pss |
⊢ ( ∪ ran 𝑍 ⊊ ∪ ran 𝑡 ↔ ( ∪ ran 𝑍 ⊆ ∪ ran 𝑡 ∧ ∪ ran 𝑍 ≠ ∪ ran 𝑡 ) ) |
43 |
9 41 42
|
sylanbrc |
⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ∪ ran 𝑡 ∈ 𝐹 ) → ∪ ran 𝑍 ⊊ ∪ ran 𝑡 ) |
44 |
7 43
|
sylan2 |
⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ ( 𝐺 ∈ 𝐹 ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → ∪ ran 𝑍 ⊊ ∪ ran 𝑡 ) |
45 |
44
|
3impb |
⊢ ( ( 𝑡 : ω –1-1→ 𝑉 ∧ 𝐺 ∈ 𝐹 ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ∪ ran 𝑍 ⊊ ∪ ran 𝑡 ) |