Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem.a |
⊢ 𝑈 = seqω ( ( 𝑖 ∈ ω , 𝑢 ∈ V ↦ if ( ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) = ∅ , 𝑢 , ( ( 𝑡 ‘ 𝑖 ) ∩ 𝑢 ) ) ) , ∪ ran 𝑡 ) |
2 |
|
fin23lem17.f |
⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } |
3 |
|
fin23lem.b |
⊢ 𝑃 = { 𝑣 ∈ ω ∣ ∩ ran 𝑈 ⊆ ( 𝑡 ‘ 𝑣 ) } |
4 |
|
fin23lem.c |
⊢ 𝑄 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ 𝑃 ( 𝑥 ∩ 𝑃 ) ≈ 𝑤 ) ) |
5 |
|
fin23lem.d |
⊢ 𝑅 = ( 𝑤 ∈ ω ↦ ( ℩ 𝑥 ∈ ( ω ∖ 𝑃 ) ( 𝑥 ∩ ( ω ∖ 𝑃 ) ) ≈ 𝑤 ) ) |
6 |
|
fin23lem.e |
⊢ 𝑍 = if ( 𝑃 ∈ Fin , ( 𝑡 ∘ 𝑅 ) , ( ( 𝑧 ∈ 𝑃 ↦ ( ( 𝑡 ‘ 𝑧 ) ∖ ∩ ran 𝑈 ) ) ∘ 𝑄 ) ) |
7 |
1 2 3 4 5 6
|
fin23lem28 |
⊢ ( 𝑡 : ω –1-1→ V → 𝑍 : ω –1-1→ V ) |
8 |
7
|
ad2antrl |
⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → 𝑍 : ω –1-1→ V ) |
9 |
|
simprl |
⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → 𝑡 : ω –1-1→ V ) |
10 |
|
simpl |
⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → 𝐺 ∈ 𝐹 ) |
11 |
|
simprr |
⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → ∪ ran 𝑡 ⊆ 𝐺 ) |
12 |
1 2 3 4 5 6
|
fin23lem31 |
⊢ ( ( 𝑡 : ω –1-1→ V ∧ 𝐺 ∈ 𝐹 ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ∪ ran 𝑍 ⊊ ∪ ran 𝑡 ) |
13 |
9 10 11 12
|
syl3anc |
⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → ∪ ran 𝑍 ⊊ ∪ ran 𝑡 ) |
14 |
|
f1fn |
⊢ ( 𝑡 : ω –1-1→ V → 𝑡 Fn ω ) |
15 |
|
dffn3 |
⊢ ( 𝑡 Fn ω ↔ 𝑡 : ω ⟶ ran 𝑡 ) |
16 |
14 15
|
sylib |
⊢ ( 𝑡 : ω –1-1→ V → 𝑡 : ω ⟶ ran 𝑡 ) |
17 |
16
|
ad2antrl |
⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → 𝑡 : ω ⟶ ran 𝑡 ) |
18 |
|
sspwuni |
⊢ ( ran 𝑡 ⊆ 𝒫 𝐺 ↔ ∪ ran 𝑡 ⊆ 𝐺 ) |
19 |
18
|
biimpri |
⊢ ( ∪ ran 𝑡 ⊆ 𝐺 → ran 𝑡 ⊆ 𝒫 𝐺 ) |
20 |
19
|
ad2antll |
⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → ran 𝑡 ⊆ 𝒫 𝐺 ) |
21 |
17 20
|
fssd |
⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → 𝑡 : ω ⟶ 𝒫 𝐺 ) |
22 |
|
pwexg |
⊢ ( 𝐺 ∈ 𝐹 → 𝒫 𝐺 ∈ V ) |
23 |
22
|
adantr |
⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → 𝒫 𝐺 ∈ V ) |
24 |
|
vex |
⊢ 𝑡 ∈ V |
25 |
|
f1f |
⊢ ( 𝑡 : ω –1-1→ V → 𝑡 : ω ⟶ V ) |
26 |
|
dmfex |
⊢ ( ( 𝑡 ∈ V ∧ 𝑡 : ω ⟶ V ) → ω ∈ V ) |
27 |
24 25 26
|
sylancr |
⊢ ( 𝑡 : ω –1-1→ V → ω ∈ V ) |
28 |
27
|
ad2antrl |
⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → ω ∈ V ) |
29 |
23 28
|
elmapd |
⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↔ 𝑡 : ω ⟶ 𝒫 𝐺 ) ) |
30 |
21 29
|
mpbird |
⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ) |
31 |
|
f1f |
⊢ ( 𝑍 : ω –1-1→ V → 𝑍 : ω ⟶ V ) |
32 |
8 31
|
syl |
⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → 𝑍 : ω ⟶ V ) |
33 |
32 28
|
fexd |
⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → 𝑍 ∈ V ) |
34 |
|
eqid |
⊢ ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) = ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) |
35 |
34
|
fvmpt2 |
⊢ ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ∧ 𝑍 ∈ V ) → ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) = 𝑍 ) |
36 |
30 33 35
|
syl2anc |
⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) = 𝑍 ) |
37 |
|
f1eq1 |
⊢ ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) = 𝑍 → ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) : ω –1-1→ V ↔ 𝑍 : ω –1-1→ V ) ) |
38 |
|
rneq |
⊢ ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) = 𝑍 → ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) = ran 𝑍 ) |
39 |
38
|
unieqd |
⊢ ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) = 𝑍 → ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) = ∪ ran 𝑍 ) |
40 |
39
|
psseq1d |
⊢ ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) = 𝑍 → ( ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ↔ ∪ ran 𝑍 ⊊ ∪ ran 𝑡 ) ) |
41 |
37 40
|
anbi12d |
⊢ ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) = 𝑍 → ( ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ↔ ( 𝑍 : ω –1-1→ V ∧ ∪ ran 𝑍 ⊊ ∪ ran 𝑡 ) ) ) |
42 |
36 41
|
syl |
⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → ( ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ↔ ( 𝑍 : ω –1-1→ V ∧ ∪ ran 𝑍 ⊊ ∪ ran 𝑡 ) ) ) |
43 |
8 13 42
|
mpbir2and |
⊢ ( ( 𝐺 ∈ 𝐹 ∧ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) → ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) |
44 |
43
|
ex |
⊢ ( 𝐺 ∈ 𝐹 → ( ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ) |
45 |
44
|
alrimiv |
⊢ ( 𝐺 ∈ 𝐹 → ∀ 𝑡 ( ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ) |
46 |
|
ovex |
⊢ ( 𝒫 𝐺 ↑m ω ) ∈ V |
47 |
46
|
mptex |
⊢ ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ∈ V |
48 |
|
nfmpt1 |
⊢ Ⅎ 𝑡 ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) |
49 |
48
|
nfeq2 |
⊢ Ⅎ 𝑡 𝑓 = ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) |
50 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) → ( 𝑓 ‘ 𝑡 ) = ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ) |
51 |
|
f1eq1 |
⊢ ( ( 𝑓 ‘ 𝑡 ) = ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) → ( ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ↔ ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) : ω –1-1→ V ) ) |
52 |
50 51
|
syl |
⊢ ( 𝑓 = ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) → ( ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ↔ ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) : ω –1-1→ V ) ) |
53 |
50
|
rneqd |
⊢ ( 𝑓 = ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) → ran ( 𝑓 ‘ 𝑡 ) = ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ) |
54 |
53
|
unieqd |
⊢ ( 𝑓 = ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) → ∪ ran ( 𝑓 ‘ 𝑡 ) = ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ) |
55 |
54
|
psseq1d |
⊢ ( 𝑓 = ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) → ( ∪ ran ( 𝑓 ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ↔ ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) |
56 |
52 55
|
anbi12d |
⊢ ( 𝑓 = ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) → ( ( ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ↔ ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ) |
57 |
56
|
imbi2d |
⊢ ( 𝑓 = ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) → ( ( ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ↔ ( ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ) ) |
58 |
49 57
|
albid |
⊢ ( 𝑓 = ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) → ( ∀ 𝑡 ( ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ↔ ∀ 𝑡 ( ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ) ) |
59 |
47 58
|
spcev |
⊢ ( ∀ 𝑡 ( ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ( ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( ( 𝑡 ∈ ( 𝒫 𝐺 ↑m ω ) ↦ 𝑍 ) ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) → ∃ 𝑓 ∀ 𝑡 ( ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ) |
60 |
45 59
|
syl |
⊢ ( 𝐺 ∈ 𝐹 → ∃ 𝑓 ∀ 𝑡 ( ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ) |
61 |
|
f1eq1 |
⊢ ( 𝑏 = 𝑡 → ( 𝑏 : ω –1-1→ V ↔ 𝑡 : ω –1-1→ V ) ) |
62 |
|
rneq |
⊢ ( 𝑏 = 𝑡 → ran 𝑏 = ran 𝑡 ) |
63 |
62
|
unieqd |
⊢ ( 𝑏 = 𝑡 → ∪ ran 𝑏 = ∪ ran 𝑡 ) |
64 |
63
|
sseq1d |
⊢ ( 𝑏 = 𝑡 → ( ∪ ran 𝑏 ⊆ 𝐺 ↔ ∪ ran 𝑡 ⊆ 𝐺 ) ) |
65 |
61 64
|
anbi12d |
⊢ ( 𝑏 = 𝑡 → ( ( 𝑏 : ω –1-1→ V ∧ ∪ ran 𝑏 ⊆ 𝐺 ) ↔ ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) ) ) |
66 |
|
fveq2 |
⊢ ( 𝑏 = 𝑡 → ( 𝑓 ‘ 𝑏 ) = ( 𝑓 ‘ 𝑡 ) ) |
67 |
|
f1eq1 |
⊢ ( ( 𝑓 ‘ 𝑏 ) = ( 𝑓 ‘ 𝑡 ) → ( ( 𝑓 ‘ 𝑏 ) : ω –1-1→ V ↔ ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ) ) |
68 |
66 67
|
syl |
⊢ ( 𝑏 = 𝑡 → ( ( 𝑓 ‘ 𝑏 ) : ω –1-1→ V ↔ ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ) ) |
69 |
66
|
rneqd |
⊢ ( 𝑏 = 𝑡 → ran ( 𝑓 ‘ 𝑏 ) = ran ( 𝑓 ‘ 𝑡 ) ) |
70 |
69
|
unieqd |
⊢ ( 𝑏 = 𝑡 → ∪ ran ( 𝑓 ‘ 𝑏 ) = ∪ ran ( 𝑓 ‘ 𝑡 ) ) |
71 |
70 63
|
psseq12d |
⊢ ( 𝑏 = 𝑡 → ( ∪ ran ( 𝑓 ‘ 𝑏 ) ⊊ ∪ ran 𝑏 ↔ ∪ ran ( 𝑓 ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) |
72 |
68 71
|
anbi12d |
⊢ ( 𝑏 = 𝑡 → ( ( ( 𝑓 ‘ 𝑏 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑏 ) ⊊ ∪ ran 𝑏 ) ↔ ( ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ) |
73 |
65 72
|
imbi12d |
⊢ ( 𝑏 = 𝑡 → ( ( ( 𝑏 : ω –1-1→ V ∧ ∪ ran 𝑏 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑏 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑏 ) ⊊ ∪ ran 𝑏 ) ) ↔ ( ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ) ) |
74 |
73
|
cbvalvw |
⊢ ( ∀ 𝑏 ( ( 𝑏 : ω –1-1→ V ∧ ∪ ran 𝑏 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑏 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑏 ) ⊊ ∪ ran 𝑏 ) ) ↔ ∀ 𝑡 ( ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ) |
75 |
74
|
exbii |
⊢ ( ∃ 𝑓 ∀ 𝑏 ( ( 𝑏 : ω –1-1→ V ∧ ∪ ran 𝑏 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑏 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑏 ) ⊊ ∪ ran 𝑏 ) ) ↔ ∃ 𝑓 ∀ 𝑡 ( ( 𝑡 : ω –1-1→ V ∧ ∪ ran 𝑡 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑡 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑡 ) ⊊ ∪ ran 𝑡 ) ) ) |
76 |
60 75
|
sylibr |
⊢ ( 𝐺 ∈ 𝐹 → ∃ 𝑓 ∀ 𝑏 ( ( 𝑏 : ω –1-1→ V ∧ ∪ ran 𝑏 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑏 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑏 ) ⊊ ∪ ran 𝑏 ) ) ) |