Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem33.f |
⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } |
2 |
|
fveq2 |
⊢ ( 𝑗 = 𝑐 → ( 𝑒 ‘ 𝑗 ) = ( 𝑒 ‘ 𝑐 ) ) |
3 |
2
|
ineq1d |
⊢ ( 𝑗 = 𝑐 → ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑘 ) ) |
4 |
3
|
eqeq1d |
⊢ ( 𝑗 = 𝑐 → ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ ↔ ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑘 ) = ∅ ) ) |
5 |
4 3
|
ifbieq2d |
⊢ ( 𝑗 = 𝑐 → if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) = if ( ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑘 ) ) ) |
6 |
|
ineq2 |
⊢ ( 𝑘 = 𝑑 → ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑘 ) = ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑑 ) ) |
7 |
6
|
eqeq1d |
⊢ ( 𝑘 = 𝑑 → ( ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑘 ) = ∅ ↔ ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑑 ) = ∅ ) ) |
8 |
|
id |
⊢ ( 𝑘 = 𝑑 → 𝑘 = 𝑑 ) |
9 |
7 8 6
|
ifbieq12d |
⊢ ( 𝑘 = 𝑑 → if ( ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑘 ) ) = if ( ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑑 ) = ∅ , 𝑑 , ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑑 ) ) ) |
10 |
5 9
|
cbvmpov |
⊢ ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) = ( 𝑐 ∈ ω , 𝑑 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑑 ) = ∅ , 𝑑 , ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑑 ) ) ) |
11 |
|
eqid |
⊢ ∪ ran 𝑒 = ∪ ran 𝑒 |
12 |
|
seqomeq12 |
⊢ ( ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) = ( 𝑐 ∈ ω , 𝑑 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑑 ) = ∅ , 𝑑 , ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑑 ) ) ) ∧ ∪ ran 𝑒 = ∪ ran 𝑒 ) → seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) = seqω ( ( 𝑐 ∈ ω , 𝑑 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑑 ) = ∅ , 𝑑 , ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑑 ) ) ) , ∪ ran 𝑒 ) ) |
13 |
10 11 12
|
mp2an |
⊢ seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) = seqω ( ( 𝑐 ∈ ω , 𝑑 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑑 ) = ∅ , 𝑑 , ( ( 𝑒 ‘ 𝑐 ) ∩ 𝑑 ) ) ) , ∪ ran 𝑒 ) |
14 |
|
fveq2 |
⊢ ( 𝑙 = 𝑦 → ( 𝑒 ‘ 𝑙 ) = ( 𝑒 ‘ 𝑦 ) ) |
15 |
14
|
sseq2d |
⊢ ( 𝑙 = 𝑦 → ( ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) ↔ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑦 ) ) ) |
16 |
15
|
cbvrabv |
⊢ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } = { 𝑦 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑦 ) } |
17 |
|
eqid |
⊢ ( 𝑔 ∈ ω ↦ ( ℩ 𝑥 ∈ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ( 𝑥 ∩ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ) ≈ 𝑔 ) ) = ( 𝑔 ∈ ω ↦ ( ℩ 𝑥 ∈ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ( 𝑥 ∩ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ) ≈ 𝑔 ) ) |
18 |
|
eqid |
⊢ ( 𝑔 ∈ ω ↦ ( ℩ 𝑥 ∈ ( ω ∖ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ) ( 𝑥 ∩ ( ω ∖ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ) ) ≈ 𝑔 ) ) = ( 𝑔 ∈ ω ↦ ( ℩ 𝑥 ∈ ( ω ∖ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ) ( 𝑥 ∩ ( ω ∖ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ) ) ≈ 𝑔 ) ) |
19 |
|
eqid |
⊢ if ( { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ∈ Fin , ( 𝑒 ∘ ( 𝑔 ∈ ω ↦ ( ℩ 𝑥 ∈ ( ω ∖ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ) ( 𝑥 ∩ ( ω ∖ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ) ) ≈ 𝑔 ) ) ) , ( ( 𝑖 ∈ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ↦ ( ( 𝑒 ‘ 𝑖 ) ∖ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ) ) ∘ ( 𝑔 ∈ ω ↦ ( ℩ 𝑥 ∈ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ( 𝑥 ∩ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ) ≈ 𝑔 ) ) ) ) = if ( { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ∈ Fin , ( 𝑒 ∘ ( 𝑔 ∈ ω ↦ ( ℩ 𝑥 ∈ ( ω ∖ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ) ( 𝑥 ∩ ( ω ∖ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ) ) ≈ 𝑔 ) ) ) , ( ( 𝑖 ∈ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ↦ ( ( 𝑒 ‘ 𝑖 ) ∖ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ) ) ∘ ( 𝑔 ∈ ω ↦ ( ℩ 𝑥 ∈ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ( 𝑥 ∩ { 𝑙 ∈ ω ∣ ∩ ran seqω ( ( 𝑗 ∈ ω , 𝑘 ∈ V ↦ if ( ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) = ∅ , 𝑘 , ( ( 𝑒 ‘ 𝑗 ) ∩ 𝑘 ) ) ) , ∪ ran 𝑒 ) ⊆ ( 𝑒 ‘ 𝑙 ) } ) ≈ 𝑔 ) ) ) ) |
20 |
13 1 16 17 18 19
|
fin23lem32 |
⊢ ( 𝐺 ∈ 𝐹 → ∃ 𝑓 ∀ 𝑏 ( ( 𝑏 : ω –1-1→ V ∧ ∪ ran 𝑏 ⊆ 𝐺 ) → ( ( 𝑓 ‘ 𝑏 ) : ω –1-1→ V ∧ ∪ ran ( 𝑓 ‘ 𝑏 ) ⊊ ∪ ran 𝑏 ) ) ) |