Metamath Proof Explorer


Theorem fin23lem35

Description: Lemma for fin23 . Strict order property of Y . (Contributed by Stefan O'Rear, 2-Nov-2014)

Ref Expression
Hypotheses fin23lem33.f 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎𝑥 ) → ran 𝑎 ∈ ran 𝑎 ) }
fin23lem.f ( 𝜑 : ω –1-1→ V )
fin23lem.g ( 𝜑 ran 𝐺 )
fin23lem.h ( 𝜑 → ∀ 𝑗 ( ( 𝑗 : ω –1-1→ V ∧ ran 𝑗𝐺 ) → ( ( 𝑖𝑗 ) : ω –1-1→ V ∧ ran ( 𝑖𝑗 ) ⊊ ran 𝑗 ) ) )
fin23lem.i 𝑌 = ( rec ( 𝑖 , ) ↾ ω )
Assertion fin23lem35 ( ( 𝜑𝐴 ∈ ω ) → ran ( 𝑌 ‘ suc 𝐴 ) ⊊ ran ( 𝑌𝐴 ) )

Proof

Step Hyp Ref Expression
1 fin23lem33.f 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎𝑥 ) → ran 𝑎 ∈ ran 𝑎 ) }
2 fin23lem.f ( 𝜑 : ω –1-1→ V )
3 fin23lem.g ( 𝜑 ran 𝐺 )
4 fin23lem.h ( 𝜑 → ∀ 𝑗 ( ( 𝑗 : ω –1-1→ V ∧ ran 𝑗𝐺 ) → ( ( 𝑖𝑗 ) : ω –1-1→ V ∧ ran ( 𝑖𝑗 ) ⊊ ran 𝑗 ) ) )
5 fin23lem.i 𝑌 = ( rec ( 𝑖 , ) ↾ ω )
6 1 2 3 4 5 fin23lem34 ( ( 𝜑𝐴 ∈ ω ) → ( ( 𝑌𝐴 ) : ω –1-1→ V ∧ ran ( 𝑌𝐴 ) ⊆ 𝐺 ) )
7 fvex ( 𝑌𝐴 ) ∈ V
8 f1eq1 ( 𝑗 = ( 𝑌𝐴 ) → ( 𝑗 : ω –1-1→ V ↔ ( 𝑌𝐴 ) : ω –1-1→ V ) )
9 rneq ( 𝑗 = ( 𝑌𝐴 ) → ran 𝑗 = ran ( 𝑌𝐴 ) )
10 9 unieqd ( 𝑗 = ( 𝑌𝐴 ) → ran 𝑗 = ran ( 𝑌𝐴 ) )
11 10 sseq1d ( 𝑗 = ( 𝑌𝐴 ) → ( ran 𝑗𝐺 ran ( 𝑌𝐴 ) ⊆ 𝐺 ) )
12 8 11 anbi12d ( 𝑗 = ( 𝑌𝐴 ) → ( ( 𝑗 : ω –1-1→ V ∧ ran 𝑗𝐺 ) ↔ ( ( 𝑌𝐴 ) : ω –1-1→ V ∧ ran ( 𝑌𝐴 ) ⊆ 𝐺 ) ) )
13 fveq2 ( 𝑗 = ( 𝑌𝐴 ) → ( 𝑖𝑗 ) = ( 𝑖 ‘ ( 𝑌𝐴 ) ) )
14 f1eq1 ( ( 𝑖𝑗 ) = ( 𝑖 ‘ ( 𝑌𝐴 ) ) → ( ( 𝑖𝑗 ) : ω –1-1→ V ↔ ( 𝑖 ‘ ( 𝑌𝐴 ) ) : ω –1-1→ V ) )
15 13 14 syl ( 𝑗 = ( 𝑌𝐴 ) → ( ( 𝑖𝑗 ) : ω –1-1→ V ↔ ( 𝑖 ‘ ( 𝑌𝐴 ) ) : ω –1-1→ V ) )
16 13 rneqd ( 𝑗 = ( 𝑌𝐴 ) → ran ( 𝑖𝑗 ) = ran ( 𝑖 ‘ ( 𝑌𝐴 ) ) )
17 16 unieqd ( 𝑗 = ( 𝑌𝐴 ) → ran ( 𝑖𝑗 ) = ran ( 𝑖 ‘ ( 𝑌𝐴 ) ) )
18 17 10 psseq12d ( 𝑗 = ( 𝑌𝐴 ) → ( ran ( 𝑖𝑗 ) ⊊ ran 𝑗 ran ( 𝑖 ‘ ( 𝑌𝐴 ) ) ⊊ ran ( 𝑌𝐴 ) ) )
19 15 18 anbi12d ( 𝑗 = ( 𝑌𝐴 ) → ( ( ( 𝑖𝑗 ) : ω –1-1→ V ∧ ran ( 𝑖𝑗 ) ⊊ ran 𝑗 ) ↔ ( ( 𝑖 ‘ ( 𝑌𝐴 ) ) : ω –1-1→ V ∧ ran ( 𝑖 ‘ ( 𝑌𝐴 ) ) ⊊ ran ( 𝑌𝐴 ) ) ) )
20 12 19 imbi12d ( 𝑗 = ( 𝑌𝐴 ) → ( ( ( 𝑗 : ω –1-1→ V ∧ ran 𝑗𝐺 ) → ( ( 𝑖𝑗 ) : ω –1-1→ V ∧ ran ( 𝑖𝑗 ) ⊊ ran 𝑗 ) ) ↔ ( ( ( 𝑌𝐴 ) : ω –1-1→ V ∧ ran ( 𝑌𝐴 ) ⊆ 𝐺 ) → ( ( 𝑖 ‘ ( 𝑌𝐴 ) ) : ω –1-1→ V ∧ ran ( 𝑖 ‘ ( 𝑌𝐴 ) ) ⊊ ran ( 𝑌𝐴 ) ) ) ) )
21 7 20 spcv ( ∀ 𝑗 ( ( 𝑗 : ω –1-1→ V ∧ ran 𝑗𝐺 ) → ( ( 𝑖𝑗 ) : ω –1-1→ V ∧ ran ( 𝑖𝑗 ) ⊊ ran 𝑗 ) ) → ( ( ( 𝑌𝐴 ) : ω –1-1→ V ∧ ran ( 𝑌𝐴 ) ⊆ 𝐺 ) → ( ( 𝑖 ‘ ( 𝑌𝐴 ) ) : ω –1-1→ V ∧ ran ( 𝑖 ‘ ( 𝑌𝐴 ) ) ⊊ ran ( 𝑌𝐴 ) ) ) )
22 4 21 syl ( 𝜑 → ( ( ( 𝑌𝐴 ) : ω –1-1→ V ∧ ran ( 𝑌𝐴 ) ⊆ 𝐺 ) → ( ( 𝑖 ‘ ( 𝑌𝐴 ) ) : ω –1-1→ V ∧ ran ( 𝑖 ‘ ( 𝑌𝐴 ) ) ⊊ ran ( 𝑌𝐴 ) ) ) )
23 22 adantr ( ( 𝜑𝐴 ∈ ω ) → ( ( ( 𝑌𝐴 ) : ω –1-1→ V ∧ ran ( 𝑌𝐴 ) ⊆ 𝐺 ) → ( ( 𝑖 ‘ ( 𝑌𝐴 ) ) : ω –1-1→ V ∧ ran ( 𝑖 ‘ ( 𝑌𝐴 ) ) ⊊ ran ( 𝑌𝐴 ) ) ) )
24 6 23 mpd ( ( 𝜑𝐴 ∈ ω ) → ( ( 𝑖 ‘ ( 𝑌𝐴 ) ) : ω –1-1→ V ∧ ran ( 𝑖 ‘ ( 𝑌𝐴 ) ) ⊊ ran ( 𝑌𝐴 ) ) )
25 24 simprd ( ( 𝜑𝐴 ∈ ω ) → ran ( 𝑖 ‘ ( 𝑌𝐴 ) ) ⊊ ran ( 𝑌𝐴 ) )
26 frsuc ( 𝐴 ∈ ω → ( ( rec ( 𝑖 , ) ↾ ω ) ‘ suc 𝐴 ) = ( 𝑖 ‘ ( ( rec ( 𝑖 , ) ↾ ω ) ‘ 𝐴 ) ) )
27 26 adantl ( ( 𝜑𝐴 ∈ ω ) → ( ( rec ( 𝑖 , ) ↾ ω ) ‘ suc 𝐴 ) = ( 𝑖 ‘ ( ( rec ( 𝑖 , ) ↾ ω ) ‘ 𝐴 ) ) )
28 5 fveq1i ( 𝑌 ‘ suc 𝐴 ) = ( ( rec ( 𝑖 , ) ↾ ω ) ‘ suc 𝐴 )
29 5 fveq1i ( 𝑌𝐴 ) = ( ( rec ( 𝑖 , ) ↾ ω ) ‘ 𝐴 )
30 29 fveq2i ( 𝑖 ‘ ( 𝑌𝐴 ) ) = ( 𝑖 ‘ ( ( rec ( 𝑖 , ) ↾ ω ) ‘ 𝐴 ) )
31 27 28 30 3eqtr4g ( ( 𝜑𝐴 ∈ ω ) → ( 𝑌 ‘ suc 𝐴 ) = ( 𝑖 ‘ ( 𝑌𝐴 ) ) )
32 31 rneqd ( ( 𝜑𝐴 ∈ ω ) → ran ( 𝑌 ‘ suc 𝐴 ) = ran ( 𝑖 ‘ ( 𝑌𝐴 ) ) )
33 32 unieqd ( ( 𝜑𝐴 ∈ ω ) → ran ( 𝑌 ‘ suc 𝐴 ) = ran ( 𝑖 ‘ ( 𝑌𝐴 ) ) )
34 33 psseq1d ( ( 𝜑𝐴 ∈ ω ) → ( ran ( 𝑌 ‘ suc 𝐴 ) ⊊ ran ( 𝑌𝐴 ) ↔ ran ( 𝑖 ‘ ( 𝑌𝐴 ) ) ⊊ ran ( 𝑌𝐴 ) ) )
35 25 34 mpbird ( ( 𝜑𝐴 ∈ ω ) → ran ( 𝑌 ‘ suc 𝐴 ) ⊊ ran ( 𝑌𝐴 ) )