Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem40.f |
⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } |
2 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) → 𝑓 : ω ⟶ 𝒫 𝐴 ) |
3 |
|
simpl |
⊢ ( ( 𝐴 ∈ FinII ∧ ( 𝑓 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ) ) → 𝐴 ∈ FinII ) |
4 |
|
frn |
⊢ ( 𝑓 : ω ⟶ 𝒫 𝐴 → ran 𝑓 ⊆ 𝒫 𝐴 ) |
5 |
4
|
ad2antrl |
⊢ ( ( 𝐴 ∈ FinII ∧ ( 𝑓 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ) ) → ran 𝑓 ⊆ 𝒫 𝐴 ) |
6 |
|
fdm |
⊢ ( 𝑓 : ω ⟶ 𝒫 𝐴 → dom 𝑓 = ω ) |
7 |
|
peano1 |
⊢ ∅ ∈ ω |
8 |
|
ne0i |
⊢ ( ∅ ∈ ω → ω ≠ ∅ ) |
9 |
7 8
|
mp1i |
⊢ ( 𝑓 : ω ⟶ 𝒫 𝐴 → ω ≠ ∅ ) |
10 |
6 9
|
eqnetrd |
⊢ ( 𝑓 : ω ⟶ 𝒫 𝐴 → dom 𝑓 ≠ ∅ ) |
11 |
|
dm0rn0 |
⊢ ( dom 𝑓 = ∅ ↔ ran 𝑓 = ∅ ) |
12 |
11
|
necon3bii |
⊢ ( dom 𝑓 ≠ ∅ ↔ ran 𝑓 ≠ ∅ ) |
13 |
10 12
|
sylib |
⊢ ( 𝑓 : ω ⟶ 𝒫 𝐴 → ran 𝑓 ≠ ∅ ) |
14 |
13
|
ad2antrl |
⊢ ( ( 𝐴 ∈ FinII ∧ ( 𝑓 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ) ) → ran 𝑓 ≠ ∅ ) |
15 |
|
ffn |
⊢ ( 𝑓 : ω ⟶ 𝒫 𝐴 → 𝑓 Fn ω ) |
16 |
15
|
ad2antrl |
⊢ ( ( 𝐴 ∈ FinII ∧ ( 𝑓 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ) ) → 𝑓 Fn ω ) |
17 |
|
sspss |
⊢ ( ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ↔ ( ( 𝑓 ‘ suc 𝑏 ) ⊊ ( 𝑓 ‘ 𝑏 ) ∨ ( 𝑓 ‘ suc 𝑏 ) = ( 𝑓 ‘ 𝑏 ) ) ) |
18 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑏 ) ∈ V |
19 |
|
fvex |
⊢ ( 𝑓 ‘ suc 𝑏 ) ∈ V |
20 |
18 19
|
brcnv |
⊢ ( ( 𝑓 ‘ 𝑏 ) ◡ [⊊] ( 𝑓 ‘ suc 𝑏 ) ↔ ( 𝑓 ‘ suc 𝑏 ) [⊊] ( 𝑓 ‘ 𝑏 ) ) |
21 |
18
|
brrpss |
⊢ ( ( 𝑓 ‘ suc 𝑏 ) [⊊] ( 𝑓 ‘ 𝑏 ) ↔ ( 𝑓 ‘ suc 𝑏 ) ⊊ ( 𝑓 ‘ 𝑏 ) ) |
22 |
20 21
|
bitri |
⊢ ( ( 𝑓 ‘ 𝑏 ) ◡ [⊊] ( 𝑓 ‘ suc 𝑏 ) ↔ ( 𝑓 ‘ suc 𝑏 ) ⊊ ( 𝑓 ‘ 𝑏 ) ) |
23 |
|
eqcom |
⊢ ( ( 𝑓 ‘ 𝑏 ) = ( 𝑓 ‘ suc 𝑏 ) ↔ ( 𝑓 ‘ suc 𝑏 ) = ( 𝑓 ‘ 𝑏 ) ) |
24 |
22 23
|
orbi12i |
⊢ ( ( ( 𝑓 ‘ 𝑏 ) ◡ [⊊] ( 𝑓 ‘ suc 𝑏 ) ∨ ( 𝑓 ‘ 𝑏 ) = ( 𝑓 ‘ suc 𝑏 ) ) ↔ ( ( 𝑓 ‘ suc 𝑏 ) ⊊ ( 𝑓 ‘ 𝑏 ) ∨ ( 𝑓 ‘ suc 𝑏 ) = ( 𝑓 ‘ 𝑏 ) ) ) |
25 |
17 24
|
sylbb2 |
⊢ ( ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) → ( ( 𝑓 ‘ 𝑏 ) ◡ [⊊] ( 𝑓 ‘ suc 𝑏 ) ∨ ( 𝑓 ‘ 𝑏 ) = ( 𝑓 ‘ suc 𝑏 ) ) ) |
26 |
25
|
ralimi |
⊢ ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) → ∀ 𝑏 ∈ ω ( ( 𝑓 ‘ 𝑏 ) ◡ [⊊] ( 𝑓 ‘ suc 𝑏 ) ∨ ( 𝑓 ‘ 𝑏 ) = ( 𝑓 ‘ suc 𝑏 ) ) ) |
27 |
26
|
ad2antll |
⊢ ( ( 𝐴 ∈ FinII ∧ ( 𝑓 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ) ) → ∀ 𝑏 ∈ ω ( ( 𝑓 ‘ 𝑏 ) ◡ [⊊] ( 𝑓 ‘ suc 𝑏 ) ∨ ( 𝑓 ‘ 𝑏 ) = ( 𝑓 ‘ suc 𝑏 ) ) ) |
28 |
|
porpss |
⊢ [⊊] Po ran 𝑓 |
29 |
|
cnvpo |
⊢ ( [⊊] Po ran 𝑓 ↔ ◡ [⊊] Po ran 𝑓 ) |
30 |
28 29
|
mpbi |
⊢ ◡ [⊊] Po ran 𝑓 |
31 |
30
|
a1i |
⊢ ( ( 𝐴 ∈ FinII ∧ ( 𝑓 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ) ) → ◡ [⊊] Po ran 𝑓 ) |
32 |
|
sornom |
⊢ ( ( 𝑓 Fn ω ∧ ∀ 𝑏 ∈ ω ( ( 𝑓 ‘ 𝑏 ) ◡ [⊊] ( 𝑓 ‘ suc 𝑏 ) ∨ ( 𝑓 ‘ 𝑏 ) = ( 𝑓 ‘ suc 𝑏 ) ) ∧ ◡ [⊊] Po ran 𝑓 ) → ◡ [⊊] Or ran 𝑓 ) |
33 |
16 27 31 32
|
syl3anc |
⊢ ( ( 𝐴 ∈ FinII ∧ ( 𝑓 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ) ) → ◡ [⊊] Or ran 𝑓 ) |
34 |
|
cnvso |
⊢ ( [⊊] Or ran 𝑓 ↔ ◡ [⊊] Or ran 𝑓 ) |
35 |
33 34
|
sylibr |
⊢ ( ( 𝐴 ∈ FinII ∧ ( 𝑓 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ) ) → [⊊] Or ran 𝑓 ) |
36 |
|
fin2i2 |
⊢ ( ( ( 𝐴 ∈ FinII ∧ ran 𝑓 ⊆ 𝒫 𝐴 ) ∧ ( ran 𝑓 ≠ ∅ ∧ [⊊] Or ran 𝑓 ) ) → ∩ ran 𝑓 ∈ ran 𝑓 ) |
37 |
3 5 14 35 36
|
syl22anc |
⊢ ( ( 𝐴 ∈ FinII ∧ ( 𝑓 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) ) ) → ∩ ran 𝑓 ∈ ran 𝑓 ) |
38 |
37
|
expr |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝑓 : ω ⟶ 𝒫 𝐴 ) → ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) |
39 |
2 38
|
sylan2 |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ) → ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) |
40 |
39
|
ralrimiva |
⊢ ( 𝐴 ∈ FinII → ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) |
41 |
1
|
isfin3ds |
⊢ ( 𝐴 ∈ FinII → ( 𝐴 ∈ 𝐹 ↔ ∀ 𝑓 ∈ ( 𝒫 𝐴 ↑m ω ) ( ∀ 𝑏 ∈ ω ( 𝑓 ‘ suc 𝑏 ) ⊆ ( 𝑓 ‘ 𝑏 ) → ∩ ran 𝑓 ∈ ran 𝑓 ) ) ) |
42 |
40 41
|
mpbird |
⊢ ( 𝐴 ∈ FinII → 𝐴 ∈ 𝐹 ) |