Step |
Hyp |
Ref |
Expression |
1 |
|
fin23lem40.f |
⊢ 𝐹 = { 𝑔 ∣ ∀ 𝑎 ∈ ( 𝒫 𝑔 ↑m ω ) ( ∀ 𝑥 ∈ ω ( 𝑎 ‘ suc 𝑥 ) ⊆ ( 𝑎 ‘ 𝑥 ) → ∩ ran 𝑎 ∈ ran 𝑎 ) } |
2 |
|
brdomi |
⊢ ( ω ≼ 𝒫 𝐴 → ∃ 𝑏 𝑏 : ω –1-1→ 𝒫 𝐴 ) |
3 |
1
|
fin23lem33 |
⊢ ( 𝐴 ∈ 𝐹 → ∃ 𝑐 ∀ 𝑑 ( ( 𝑑 : ω –1-1→ V ∧ ∪ ran 𝑑 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑑 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑑 ) ⊊ ∪ ran 𝑑 ) ) ) |
4 |
3
|
adantl |
⊢ ( ( 𝑏 : ω –1-1→ 𝒫 𝐴 ∧ 𝐴 ∈ 𝐹 ) → ∃ 𝑐 ∀ 𝑑 ( ( 𝑑 : ω –1-1→ V ∧ ∪ ran 𝑑 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑑 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑑 ) ⊊ ∪ ran 𝑑 ) ) ) |
5 |
|
ssv |
⊢ 𝒫 𝐴 ⊆ V |
6 |
|
f1ss |
⊢ ( ( 𝑏 : ω –1-1→ 𝒫 𝐴 ∧ 𝒫 𝐴 ⊆ V ) → 𝑏 : ω –1-1→ V ) |
7 |
5 6
|
mpan2 |
⊢ ( 𝑏 : ω –1-1→ 𝒫 𝐴 → 𝑏 : ω –1-1→ V ) |
8 |
7
|
ad2antrr |
⊢ ( ( ( 𝑏 : ω –1-1→ 𝒫 𝐴 ∧ 𝐴 ∈ 𝐹 ) ∧ ∀ 𝑑 ( ( 𝑑 : ω –1-1→ V ∧ ∪ ran 𝑑 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑑 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑑 ) ⊊ ∪ ran 𝑑 ) ) ) → 𝑏 : ω –1-1→ V ) |
9 |
|
f1f |
⊢ ( 𝑏 : ω –1-1→ 𝒫 𝐴 → 𝑏 : ω ⟶ 𝒫 𝐴 ) |
10 |
|
frn |
⊢ ( 𝑏 : ω ⟶ 𝒫 𝐴 → ran 𝑏 ⊆ 𝒫 𝐴 ) |
11 |
|
uniss |
⊢ ( ran 𝑏 ⊆ 𝒫 𝐴 → ∪ ran 𝑏 ⊆ ∪ 𝒫 𝐴 ) |
12 |
9 10 11
|
3syl |
⊢ ( 𝑏 : ω –1-1→ 𝒫 𝐴 → ∪ ran 𝑏 ⊆ ∪ 𝒫 𝐴 ) |
13 |
|
unipw |
⊢ ∪ 𝒫 𝐴 = 𝐴 |
14 |
12 13
|
sseqtrdi |
⊢ ( 𝑏 : ω –1-1→ 𝒫 𝐴 → ∪ ran 𝑏 ⊆ 𝐴 ) |
15 |
14
|
ad2antrr |
⊢ ( ( ( 𝑏 : ω –1-1→ 𝒫 𝐴 ∧ 𝐴 ∈ 𝐹 ) ∧ ∀ 𝑑 ( ( 𝑑 : ω –1-1→ V ∧ ∪ ran 𝑑 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑑 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑑 ) ⊊ ∪ ran 𝑑 ) ) ) → ∪ ran 𝑏 ⊆ 𝐴 ) |
16 |
|
f1eq1 |
⊢ ( 𝑑 = 𝑒 → ( 𝑑 : ω –1-1→ V ↔ 𝑒 : ω –1-1→ V ) ) |
17 |
|
rneq |
⊢ ( 𝑑 = 𝑒 → ran 𝑑 = ran 𝑒 ) |
18 |
17
|
unieqd |
⊢ ( 𝑑 = 𝑒 → ∪ ran 𝑑 = ∪ ran 𝑒 ) |
19 |
18
|
sseq1d |
⊢ ( 𝑑 = 𝑒 → ( ∪ ran 𝑑 ⊆ 𝐴 ↔ ∪ ran 𝑒 ⊆ 𝐴 ) ) |
20 |
16 19
|
anbi12d |
⊢ ( 𝑑 = 𝑒 → ( ( 𝑑 : ω –1-1→ V ∧ ∪ ran 𝑑 ⊆ 𝐴 ) ↔ ( 𝑒 : ω –1-1→ V ∧ ∪ ran 𝑒 ⊆ 𝐴 ) ) ) |
21 |
|
fveq2 |
⊢ ( 𝑑 = 𝑒 → ( 𝑐 ‘ 𝑑 ) = ( 𝑐 ‘ 𝑒 ) ) |
22 |
|
f1eq1 |
⊢ ( ( 𝑐 ‘ 𝑑 ) = ( 𝑐 ‘ 𝑒 ) → ( ( 𝑐 ‘ 𝑑 ) : ω –1-1→ V ↔ ( 𝑐 ‘ 𝑒 ) : ω –1-1→ V ) ) |
23 |
21 22
|
syl |
⊢ ( 𝑑 = 𝑒 → ( ( 𝑐 ‘ 𝑑 ) : ω –1-1→ V ↔ ( 𝑐 ‘ 𝑒 ) : ω –1-1→ V ) ) |
24 |
21
|
rneqd |
⊢ ( 𝑑 = 𝑒 → ran ( 𝑐 ‘ 𝑑 ) = ran ( 𝑐 ‘ 𝑒 ) ) |
25 |
24
|
unieqd |
⊢ ( 𝑑 = 𝑒 → ∪ ran ( 𝑐 ‘ 𝑑 ) = ∪ ran ( 𝑐 ‘ 𝑒 ) ) |
26 |
25 18
|
psseq12d |
⊢ ( 𝑑 = 𝑒 → ( ∪ ran ( 𝑐 ‘ 𝑑 ) ⊊ ∪ ran 𝑑 ↔ ∪ ran ( 𝑐 ‘ 𝑒 ) ⊊ ∪ ran 𝑒 ) ) |
27 |
23 26
|
anbi12d |
⊢ ( 𝑑 = 𝑒 → ( ( ( 𝑐 ‘ 𝑑 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑑 ) ⊊ ∪ ran 𝑑 ) ↔ ( ( 𝑐 ‘ 𝑒 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑒 ) ⊊ ∪ ran 𝑒 ) ) ) |
28 |
20 27
|
imbi12d |
⊢ ( 𝑑 = 𝑒 → ( ( ( 𝑑 : ω –1-1→ V ∧ ∪ ran 𝑑 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑑 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑑 ) ⊊ ∪ ran 𝑑 ) ) ↔ ( ( 𝑒 : ω –1-1→ V ∧ ∪ ran 𝑒 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑒 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑒 ) ⊊ ∪ ran 𝑒 ) ) ) ) |
29 |
28
|
cbvalvw |
⊢ ( ∀ 𝑑 ( ( 𝑑 : ω –1-1→ V ∧ ∪ ran 𝑑 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑑 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑑 ) ⊊ ∪ ran 𝑑 ) ) ↔ ∀ 𝑒 ( ( 𝑒 : ω –1-1→ V ∧ ∪ ran 𝑒 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑒 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑒 ) ⊊ ∪ ran 𝑒 ) ) ) |
30 |
29
|
biimpi |
⊢ ( ∀ 𝑑 ( ( 𝑑 : ω –1-1→ V ∧ ∪ ran 𝑑 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑑 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑑 ) ⊊ ∪ ran 𝑑 ) ) → ∀ 𝑒 ( ( 𝑒 : ω –1-1→ V ∧ ∪ ran 𝑒 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑒 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑒 ) ⊊ ∪ ran 𝑒 ) ) ) |
31 |
30
|
adantl |
⊢ ( ( ( 𝑏 : ω –1-1→ 𝒫 𝐴 ∧ 𝐴 ∈ 𝐹 ) ∧ ∀ 𝑑 ( ( 𝑑 : ω –1-1→ V ∧ ∪ ran 𝑑 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑑 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑑 ) ⊊ ∪ ran 𝑑 ) ) ) → ∀ 𝑒 ( ( 𝑒 : ω –1-1→ V ∧ ∪ ran 𝑒 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑒 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑒 ) ⊊ ∪ ran 𝑒 ) ) ) |
32 |
|
eqid |
⊢ ( rec ( 𝑐 , 𝑏 ) ↾ ω ) = ( rec ( 𝑐 , 𝑏 ) ↾ ω ) |
33 |
1 8 15 31 32
|
fin23lem39 |
⊢ ( ( ( 𝑏 : ω –1-1→ 𝒫 𝐴 ∧ 𝐴 ∈ 𝐹 ) ∧ ∀ 𝑑 ( ( 𝑑 : ω –1-1→ V ∧ ∪ ran 𝑑 ⊆ 𝐴 ) → ( ( 𝑐 ‘ 𝑑 ) : ω –1-1→ V ∧ ∪ ran ( 𝑐 ‘ 𝑑 ) ⊊ ∪ ran 𝑑 ) ) ) → ¬ 𝐴 ∈ 𝐹 ) |
34 |
4 33
|
exlimddv |
⊢ ( ( 𝑏 : ω –1-1→ 𝒫 𝐴 ∧ 𝐴 ∈ 𝐹 ) → ¬ 𝐴 ∈ 𝐹 ) |
35 |
34
|
pm2.01da |
⊢ ( 𝑏 : ω –1-1→ 𝒫 𝐴 → ¬ 𝐴 ∈ 𝐹 ) |
36 |
35
|
exlimiv |
⊢ ( ∃ 𝑏 𝑏 : ω –1-1→ 𝒫 𝐴 → ¬ 𝐴 ∈ 𝐹 ) |
37 |
2 36
|
syl |
⊢ ( ω ≼ 𝒫 𝐴 → ¬ 𝐴 ∈ 𝐹 ) |
38 |
37
|
con2i |
⊢ ( 𝐴 ∈ 𝐹 → ¬ ω ≼ 𝒫 𝐴 ) |
39 |
|
pwexg |
⊢ ( 𝐴 ∈ 𝐹 → 𝒫 𝐴 ∈ V ) |
40 |
|
isfin4-2 |
⊢ ( 𝒫 𝐴 ∈ V → ( 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴 ) ) |
41 |
39 40
|
syl |
⊢ ( 𝐴 ∈ 𝐹 → ( 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴 ) ) |
42 |
38 41
|
mpbird |
⊢ ( 𝐴 ∈ 𝐹 → 𝒫 𝐴 ∈ FinIV ) |
43 |
|
isfin3 |
⊢ ( 𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV ) |
44 |
42 43
|
sylibr |
⊢ ( 𝐴 ∈ 𝐹 → 𝐴 ∈ FinIII ) |