Metamath Proof Explorer


Theorem fin23lem7

Description: Lemma for isfin2-2 . The componentwise complement of a nonempty collection of sets is nonempty. (Contributed by Stefan O'Rear, 31-Oct-2014) (Revised by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion fin23lem7 ( ( 𝐴𝑉𝐵 ⊆ 𝒫 𝐴𝐵 ≠ ∅ ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑥 ) ∈ 𝐵 } ≠ ∅ )

Proof

Step Hyp Ref Expression
1 n0 ( 𝐵 ≠ ∅ ↔ ∃ 𝑦 𝑦𝐵 )
2 difss ( 𝐴𝑦 ) ⊆ 𝐴
3 elpw2g ( 𝐴𝑉 → ( ( 𝐴𝑦 ) ∈ 𝒫 𝐴 ↔ ( 𝐴𝑦 ) ⊆ 𝐴 ) )
4 3 ad2antrr ( ( ( 𝐴𝑉𝐵 ⊆ 𝒫 𝐴 ) ∧ 𝑦𝐵 ) → ( ( 𝐴𝑦 ) ∈ 𝒫 𝐴 ↔ ( 𝐴𝑦 ) ⊆ 𝐴 ) )
5 2 4 mpbiri ( ( ( 𝐴𝑉𝐵 ⊆ 𝒫 𝐴 ) ∧ 𝑦𝐵 ) → ( 𝐴𝑦 ) ∈ 𝒫 𝐴 )
6 simpr ( ( 𝐴𝑉𝐵 ⊆ 𝒫 𝐴 ) → 𝐵 ⊆ 𝒫 𝐴 )
7 6 sselda ( ( ( 𝐴𝑉𝐵 ⊆ 𝒫 𝐴 ) ∧ 𝑦𝐵 ) → 𝑦 ∈ 𝒫 𝐴 )
8 7 elpwid ( ( ( 𝐴𝑉𝐵 ⊆ 𝒫 𝐴 ) ∧ 𝑦𝐵 ) → 𝑦𝐴 )
9 dfss4 ( 𝑦𝐴 ↔ ( 𝐴 ∖ ( 𝐴𝑦 ) ) = 𝑦 )
10 8 9 sylib ( ( ( 𝐴𝑉𝐵 ⊆ 𝒫 𝐴 ) ∧ 𝑦𝐵 ) → ( 𝐴 ∖ ( 𝐴𝑦 ) ) = 𝑦 )
11 simpr ( ( ( 𝐴𝑉𝐵 ⊆ 𝒫 𝐴 ) ∧ 𝑦𝐵 ) → 𝑦𝐵 )
12 10 11 eqeltrd ( ( ( 𝐴𝑉𝐵 ⊆ 𝒫 𝐴 ) ∧ 𝑦𝐵 ) → ( 𝐴 ∖ ( 𝐴𝑦 ) ) ∈ 𝐵 )
13 difeq2 ( 𝑥 = ( 𝐴𝑦 ) → ( 𝐴𝑥 ) = ( 𝐴 ∖ ( 𝐴𝑦 ) ) )
14 13 eleq1d ( 𝑥 = ( 𝐴𝑦 ) → ( ( 𝐴𝑥 ) ∈ 𝐵 ↔ ( 𝐴 ∖ ( 𝐴𝑦 ) ) ∈ 𝐵 ) )
15 14 rspcev ( ( ( 𝐴𝑦 ) ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ ( 𝐴𝑦 ) ) ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐴𝑥 ) ∈ 𝐵 )
16 5 12 15 syl2anc ( ( ( 𝐴𝑉𝐵 ⊆ 𝒫 𝐴 ) ∧ 𝑦𝐵 ) → ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐴𝑥 ) ∈ 𝐵 )
17 16 ex ( ( 𝐴𝑉𝐵 ⊆ 𝒫 𝐴 ) → ( 𝑦𝐵 → ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐴𝑥 ) ∈ 𝐵 ) )
18 17 exlimdv ( ( 𝐴𝑉𝐵 ⊆ 𝒫 𝐴 ) → ( ∃ 𝑦 𝑦𝐵 → ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐴𝑥 ) ∈ 𝐵 ) )
19 1 18 syl5bi ( ( 𝐴𝑉𝐵 ⊆ 𝒫 𝐴 ) → ( 𝐵 ≠ ∅ → ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐴𝑥 ) ∈ 𝐵 ) )
20 19 3impia ( ( 𝐴𝑉𝐵 ⊆ 𝒫 𝐴𝐵 ≠ ∅ ) → ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐴𝑥 ) ∈ 𝐵 )
21 rabn0 ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑥 ) ∈ 𝐵 } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐴𝑥 ) ∈ 𝐵 )
22 20 21 sylibr ( ( 𝐴𝑉𝐵 ⊆ 𝒫 𝐴𝐵 ≠ ∅ ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝐴𝑥 ) ∈ 𝐵 } ≠ ∅ )