| Step |
Hyp |
Ref |
Expression |
| 1 |
|
n0 |
⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐵 ) |
| 2 |
|
difss |
⊢ ( 𝐴 ∖ 𝑦 ) ⊆ 𝐴 |
| 3 |
|
elpw2g |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ∖ 𝑦 ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ 𝑦 ) ⊆ 𝐴 ) ) |
| 4 |
3
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( 𝐴 ∖ 𝑦 ) ∈ 𝒫 𝐴 ↔ ( 𝐴 ∖ 𝑦 ) ⊆ 𝐴 ) ) |
| 5 |
2 4
|
mpbiri |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐴 ∖ 𝑦 ) ∈ 𝒫 𝐴 ) |
| 6 |
|
simpr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ) → 𝐵 ⊆ 𝒫 𝐴 ) |
| 7 |
6
|
sselda |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝒫 𝐴 ) |
| 8 |
7
|
elpwid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ⊆ 𝐴 ) |
| 9 |
|
dfss4 |
⊢ ( 𝑦 ⊆ 𝐴 ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) = 𝑦 ) |
| 10 |
8 9
|
sylib |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) = 𝑦 ) |
| 11 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝐵 ) |
| 12 |
10 11
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) ∈ 𝐵 ) |
| 13 |
|
difeq2 |
⊢ ( 𝑥 = ( 𝐴 ∖ 𝑦 ) → ( 𝐴 ∖ 𝑥 ) = ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) ) |
| 14 |
13
|
eleq1d |
⊢ ( 𝑥 = ( 𝐴 ∖ 𝑦 ) → ( ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ↔ ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) ∈ 𝐵 ) ) |
| 15 |
14
|
rspcev |
⊢ ( ( ( 𝐴 ∖ 𝑦 ) ∈ 𝒫 𝐴 ∧ ( 𝐴 ∖ ( 𝐴 ∖ 𝑦 ) ) ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) |
| 16 |
5 12 15
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) |
| 17 |
16
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ) → ( 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) |
| 18 |
17
|
exlimdv |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ) → ( ∃ 𝑦 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) |
| 19 |
1 18
|
biimtrid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ) → ( 𝐵 ≠ ∅ → ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) ) |
| 20 |
19
|
3impia |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ∧ 𝐵 ≠ ∅ ) → ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) |
| 21 |
|
rabn0 |
⊢ ( { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 } ≠ ∅ ↔ ∃ 𝑥 ∈ 𝒫 𝐴 ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 ) |
| 22 |
20 21
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ⊆ 𝒫 𝐴 ∧ 𝐵 ≠ ∅ ) → { 𝑥 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑥 ) ∈ 𝐵 } ≠ ∅ ) |