Metamath Proof Explorer


Theorem fin2i

Description: Property of a II-finite set. (Contributed by Stefan O'Rear, 16-May-2015)

Ref Expression
Assertion fin2i ( ( ( 𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [] Or 𝐵 ) ) → 𝐵𝐵 )

Proof

Step Hyp Ref Expression
1 neeq1 ( 𝑦 = 𝐵 → ( 𝑦 ≠ ∅ ↔ 𝐵 ≠ ∅ ) )
2 soeq2 ( 𝑦 = 𝐵 → ( [] Or 𝑦 ↔ [] Or 𝐵 ) )
3 1 2 anbi12d ( 𝑦 = 𝐵 → ( ( 𝑦 ≠ ∅ ∧ [] Or 𝑦 ) ↔ ( 𝐵 ≠ ∅ ∧ [] Or 𝐵 ) ) )
4 unieq ( 𝑦 = 𝐵 𝑦 = 𝐵 )
5 id ( 𝑦 = 𝐵𝑦 = 𝐵 )
6 4 5 eleq12d ( 𝑦 = 𝐵 → ( 𝑦𝑦 𝐵𝐵 ) )
7 3 6 imbi12d ( 𝑦 = 𝐵 → ( ( ( 𝑦 ≠ ∅ ∧ [] Or 𝑦 ) → 𝑦𝑦 ) ↔ ( ( 𝐵 ≠ ∅ ∧ [] Or 𝐵 ) → 𝐵𝐵 ) ) )
8 isfin2 ( 𝐴 ∈ FinII → ( 𝐴 ∈ FinII ↔ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [] Or 𝑦 ) → 𝑦𝑦 ) ) )
9 8 ibi ( 𝐴 ∈ FinII → ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [] Or 𝑦 ) → 𝑦𝑦 ) )
10 9 adantr ( ( 𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴 ) → ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [] Or 𝑦 ) → 𝑦𝑦 ) )
11 pwexg ( 𝐴 ∈ FinII → 𝒫 𝐴 ∈ V )
12 elpw2g ( 𝒫 𝐴 ∈ V → ( 𝐵 ∈ 𝒫 𝒫 𝐴𝐵 ⊆ 𝒫 𝐴 ) )
13 11 12 syl ( 𝐴 ∈ FinII → ( 𝐵 ∈ 𝒫 𝒫 𝐴𝐵 ⊆ 𝒫 𝐴 ) )
14 13 biimpar ( ( 𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴 ) → 𝐵 ∈ 𝒫 𝒫 𝐴 )
15 7 10 14 rspcdva ( ( 𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴 ) → ( ( 𝐵 ≠ ∅ ∧ [] Or 𝐵 ) → 𝐵𝐵 ) )
16 15 imp ( ( ( 𝐴 ∈ FinII𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [] Or 𝐵 ) ) → 𝐵𝐵 )