Step |
Hyp |
Ref |
Expression |
1 |
|
neeq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ≠ ∅ ↔ 𝐵 ≠ ∅ ) ) |
2 |
|
soeq2 |
⊢ ( 𝑦 = 𝐵 → ( [⊊] Or 𝑦 ↔ [⊊] Or 𝐵 ) ) |
3 |
1 2
|
anbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) ↔ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) ) |
4 |
|
unieq |
⊢ ( 𝑦 = 𝐵 → ∪ 𝑦 = ∪ 𝐵 ) |
5 |
|
id |
⊢ ( 𝑦 = 𝐵 → 𝑦 = 𝐵 ) |
6 |
4 5
|
eleq12d |
⊢ ( 𝑦 = 𝐵 → ( ∪ 𝑦 ∈ 𝑦 ↔ ∪ 𝐵 ∈ 𝐵 ) ) |
7 |
3 6
|
imbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∪ 𝑦 ∈ 𝑦 ) ↔ ( ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) → ∪ 𝐵 ∈ 𝐵 ) ) ) |
8 |
|
isfin2 |
⊢ ( 𝐴 ∈ FinII → ( 𝐴 ∈ FinII ↔ ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∪ 𝑦 ∈ 𝑦 ) ) ) |
9 |
8
|
ibi |
⊢ ( 𝐴 ∈ FinII → ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∪ 𝑦 ∈ 𝑦 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) → ∀ 𝑦 ∈ 𝒫 𝒫 𝐴 ( ( 𝑦 ≠ ∅ ∧ [⊊] Or 𝑦 ) → ∪ 𝑦 ∈ 𝑦 ) ) |
11 |
|
pwexg |
⊢ ( 𝐴 ∈ FinII → 𝒫 𝐴 ∈ V ) |
12 |
|
elpw2g |
⊢ ( 𝒫 𝐴 ∈ V → ( 𝐵 ∈ 𝒫 𝒫 𝐴 ↔ 𝐵 ⊆ 𝒫 𝐴 ) ) |
13 |
11 12
|
syl |
⊢ ( 𝐴 ∈ FinII → ( 𝐵 ∈ 𝒫 𝒫 𝐴 ↔ 𝐵 ⊆ 𝒫 𝐴 ) ) |
14 |
13
|
biimpar |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) → 𝐵 ∈ 𝒫 𝒫 𝐴 ) |
15 |
7 10 14
|
rspcdva |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) → ( ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) → ∪ 𝐵 ∈ 𝐵 ) ) |
16 |
15
|
imp |
⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → ∪ 𝐵 ∈ 𝐵 ) |