Step |
Hyp |
Ref |
Expression |
1 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → 𝐵 ⊆ 𝒫 𝐴 ) |
2 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → 𝐴 ∈ FinII ) |
3 |
|
ssrab2 |
⊢ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ⊆ 𝒫 𝐴 |
4 |
3
|
a1i |
⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ⊆ 𝒫 𝐴 ) |
5 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → 𝐵 ≠ ∅ ) |
6 |
|
fin23lem7 |
⊢ ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ∧ 𝐵 ≠ ∅ ) → { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ≠ ∅ ) |
7 |
2 1 5 6
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ≠ ∅ ) |
8 |
|
sorpsscmpl |
⊢ ( [⊊] Or 𝐵 → [⊊] Or { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ) |
9 |
8
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → [⊊] Or { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ) |
10 |
|
fin2i |
⊢ ( ( ( 𝐴 ∈ FinII ∧ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ⊆ 𝒫 𝐴 ) ∧ ( { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ≠ ∅ ∧ [⊊] Or { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ) ) → ∪ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ) |
11 |
2 4 7 9 10
|
syl22anc |
⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → ∪ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ) |
12 |
|
sorpssuni |
⊢ ( [⊊] Or { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } → ( ∃ 𝑚 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ∀ 𝑛 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝑚 ⊊ 𝑛 ↔ ∪ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ) ) |
13 |
9 12
|
syl |
⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → ( ∃ 𝑚 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ∀ 𝑛 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝑚 ⊊ 𝑛 ↔ ∪ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ) ) |
14 |
11 13
|
mpbird |
⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → ∃ 𝑚 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ∀ 𝑛 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝑚 ⊊ 𝑛 ) |
15 |
|
psseq2 |
⊢ ( 𝑧 = ( 𝐴 ∖ 𝑚 ) → ( 𝑤 ⊊ 𝑧 ↔ 𝑤 ⊊ ( 𝐴 ∖ 𝑚 ) ) ) |
16 |
|
psseq2 |
⊢ ( 𝑛 = ( 𝐴 ∖ 𝑤 ) → ( 𝑚 ⊊ 𝑛 ↔ 𝑚 ⊊ ( 𝐴 ∖ 𝑤 ) ) ) |
17 |
|
pssdifcom2 |
⊢ ( ( 𝑚 ⊆ 𝐴 ∧ 𝑤 ⊆ 𝐴 ) → ( 𝑤 ⊊ ( 𝐴 ∖ 𝑚 ) ↔ 𝑚 ⊊ ( 𝐴 ∖ 𝑤 ) ) ) |
18 |
15 16 17
|
fin23lem11 |
⊢ ( 𝐵 ⊆ 𝒫 𝐴 → ( ∃ 𝑚 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ∀ 𝑛 ∈ { 𝑐 ∈ 𝒫 𝐴 ∣ ( 𝐴 ∖ 𝑐 ) ∈ 𝐵 } ¬ 𝑚 ⊊ 𝑛 → ∃ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ¬ 𝑤 ⊊ 𝑧 ) ) |
19 |
1 14 18
|
sylc |
⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → ∃ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ¬ 𝑤 ⊊ 𝑧 ) |
20 |
|
sorpssint |
⊢ ( [⊊] Or 𝐵 → ( ∃ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ¬ 𝑤 ⊊ 𝑧 ↔ ∩ 𝐵 ∈ 𝐵 ) ) |
21 |
20
|
ad2antll |
⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → ( ∃ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ¬ 𝑤 ⊊ 𝑧 ↔ ∩ 𝐵 ∈ 𝐵 ) ) |
22 |
19 21
|
mpbid |
⊢ ( ( ( 𝐴 ∈ FinII ∧ 𝐵 ⊆ 𝒫 𝐴 ) ∧ ( 𝐵 ≠ ∅ ∧ [⊊] Or 𝐵 ) ) → ∩ 𝐵 ∈ 𝐵 ) |