Step |
Hyp |
Ref |
Expression |
1 |
|
isfin32i |
⊢ ( 𝐴 ∈ FinIII → ¬ ω ≼* 𝐴 ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐹 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ¬ ω ≼* 𝐴 ) |
3 |
|
isf32lem11 |
⊢ ( ( 𝐴 ∈ FinIII ∧ ( 𝐹 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ∧ ¬ ∩ ran 𝐹 ∈ ran 𝐹 ) ) → ω ≼* 𝐴 ) |
4 |
3
|
3exp2 |
⊢ ( 𝐴 ∈ FinIII → ( 𝐹 : ω ⟶ 𝒫 𝐴 → ( ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) → ( ¬ ∩ ran 𝐹 ∈ ran 𝐹 → ω ≼* 𝐴 ) ) ) ) |
5 |
4
|
3imp |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐹 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ( ¬ ∩ ran 𝐹 ∈ ran 𝐹 → ω ≼* 𝐴 ) ) |
6 |
2 5
|
mt3d |
⊢ ( ( 𝐴 ∈ FinIII ∧ 𝐹 : ω ⟶ 𝒫 𝐴 ∧ ∀ 𝑥 ∈ ω ( 𝐹 ‘ suc 𝑥 ) ⊆ ( 𝐹 ‘ 𝑥 ) ) → ∩ ran 𝐹 ∈ ran 𝐹 ) |