Step |
Hyp |
Ref |
Expression |
1 |
|
isfin3 |
⊢ ( 𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV ) |
2 |
|
isfin4-2 |
⊢ ( 𝒫 𝐴 ∈ FinIV → ( 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴 ) ) |
3 |
2
|
ibi |
⊢ ( 𝒫 𝐴 ∈ FinIV → ¬ ω ≼ 𝒫 𝐴 ) |
4 |
|
reldom |
⊢ Rel ≼ |
5 |
4
|
brrelex2i |
⊢ ( ω ≼ 𝐴 → 𝐴 ∈ V ) |
6 |
|
canth2g |
⊢ ( 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴 ) |
7 |
5 6
|
syl |
⊢ ( ω ≼ 𝐴 → 𝐴 ≺ 𝒫 𝐴 ) |
8 |
|
domsdomtr |
⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ≺ 𝒫 𝐴 ) → ω ≺ 𝒫 𝐴 ) |
9 |
7 8
|
mpdan |
⊢ ( ω ≼ 𝐴 → ω ≺ 𝒫 𝐴 ) |
10 |
|
sdomdom |
⊢ ( ω ≺ 𝒫 𝐴 → ω ≼ 𝒫 𝐴 ) |
11 |
9 10
|
syl |
⊢ ( ω ≼ 𝐴 → ω ≼ 𝒫 𝐴 ) |
12 |
3 11
|
nsyl |
⊢ ( 𝒫 𝐴 ∈ FinIV → ¬ ω ≼ 𝐴 ) |
13 |
1 12
|
sylbi |
⊢ ( 𝐴 ∈ FinIII → ¬ ω ≼ 𝐴 ) |
14 |
|
isfin4-2 |
⊢ ( 𝐴 ∈ FinIII → ( 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴 ) ) |
15 |
13 14
|
mpbird |
⊢ ( 𝐴 ∈ FinIII → 𝐴 ∈ FinIV ) |