Metamath Proof Explorer


Theorem fin34

Description: Every III-finite set is IV-finite. (Contributed by Stefan O'Rear, 30-Oct-2014)

Ref Expression
Assertion fin34 ( 𝐴 ∈ FinIII𝐴 ∈ FinIV )

Proof

Step Hyp Ref Expression
1 isfin3 ( 𝐴 ∈ FinIII ↔ 𝒫 𝐴 ∈ FinIV )
2 isfin4-2 ( 𝒫 𝐴 ∈ FinIV → ( 𝒫 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝒫 𝐴 ) )
3 2 ibi ( 𝒫 𝐴 ∈ FinIV → ¬ ω ≼ 𝒫 𝐴 )
4 reldom Rel ≼
5 4 brrelex2i ( ω ≼ 𝐴𝐴 ∈ V )
6 canth2g ( 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴 )
7 5 6 syl ( ω ≼ 𝐴𝐴 ≺ 𝒫 𝐴 )
8 domsdomtr ( ( ω ≼ 𝐴𝐴 ≺ 𝒫 𝐴 ) → ω ≺ 𝒫 𝐴 )
9 7 8 mpdan ( ω ≼ 𝐴 → ω ≺ 𝒫 𝐴 )
10 sdomdom ( ω ≺ 𝒫 𝐴 → ω ≼ 𝒫 𝐴 )
11 9 10 syl ( ω ≼ 𝐴 → ω ≼ 𝒫 𝐴 )
12 3 11 nsyl ( 𝒫 𝐴 ∈ FinIV → ¬ ω ≼ 𝐴 )
13 1 12 sylbi ( 𝐴 ∈ FinIII → ¬ ω ≼ 𝐴 )
14 isfin4-2 ( 𝐴 ∈ FinIII → ( 𝐴 ∈ FinIV ↔ ¬ ω ≼ 𝐴 ) )
15 13 14 mpbird ( 𝐴 ∈ FinIII𝐴 ∈ FinIV )