Metamath Proof Explorer


Theorem fin41

Description: Under countable choice, the IV-finite sets (Dedekind-finite) coincide with I-finite (finite in the usual sense) sets. (Contributed by Mario Carneiro, 16-May-2015)

Ref Expression
Assertion fin41 FinIV = Fin

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 1 domtriom ( ω ≼ 𝑥 ↔ ¬ 𝑥 ≺ ω )
3 2 con2bii ( 𝑥 ≺ ω ↔ ¬ ω ≼ 𝑥 )
4 isfinite ( 𝑥 ∈ Fin ↔ 𝑥 ≺ ω )
5 isfin4-2 ( 𝑥 ∈ V → ( 𝑥 ∈ FinIV ↔ ¬ ω ≼ 𝑥 ) )
6 5 elv ( 𝑥 ∈ FinIV ↔ ¬ ω ≼ 𝑥 )
7 3 4 6 3bitr4ri ( 𝑥 ∈ FinIV𝑥 ∈ Fin )
8 7 eqriv FinIV = Fin