| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) → 𝐴 ≠ ∅ ) |
| 2 |
|
relen |
⊢ Rel ≈ |
| 3 |
2
|
brrelex1i |
⊢ ( 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) → 𝐴 ∈ V ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) → 𝐴 ∈ V ) |
| 5 |
|
0sdomg |
⊢ ( 𝐴 ∈ V → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 6 |
4 5
|
syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
| 7 |
1 6
|
mpbird |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) → ∅ ≺ 𝐴 ) |
| 8 |
|
0sdom1dom |
⊢ ( ∅ ≺ 𝐴 ↔ 1o ≼ 𝐴 ) |
| 9 |
7 8
|
sylib |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) → 1o ≼ 𝐴 ) |
| 10 |
|
djudom2 |
⊢ ( ( 1o ≼ 𝐴 ∧ 𝐴 ∈ V ) → ( 𝐴 ⊔ 1o ) ≼ ( 𝐴 ⊔ 𝐴 ) ) |
| 11 |
9 4 10
|
syl2anc |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) → ( 𝐴 ⊔ 1o ) ≼ ( 𝐴 ⊔ 𝐴 ) ) |
| 12 |
|
domen2 |
⊢ ( 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) → ( ( 𝐴 ⊔ 1o ) ≼ 𝐴 ↔ ( 𝐴 ⊔ 1o ) ≼ ( 𝐴 ⊔ 𝐴 ) ) ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) → ( ( 𝐴 ⊔ 1o ) ≼ 𝐴 ↔ ( 𝐴 ⊔ 1o ) ≼ ( 𝐴 ⊔ 𝐴 ) ) ) |
| 14 |
11 13
|
mpbird |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) → ( 𝐴 ⊔ 1o ) ≼ 𝐴 ) |
| 15 |
|
domnsym |
⊢ ( ( 𝐴 ⊔ 1o ) ≼ 𝐴 → ¬ 𝐴 ≺ ( 𝐴 ⊔ 1o ) ) |
| 16 |
14 15
|
syl |
⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) → ¬ 𝐴 ≺ ( 𝐴 ⊔ 1o ) ) |
| 17 |
|
isfin4p1 |
⊢ ( 𝐴 ∈ FinIV ↔ 𝐴 ≺ ( 𝐴 ⊔ 1o ) ) |
| 18 |
17
|
biimpi |
⊢ ( 𝐴 ∈ FinIV → 𝐴 ≺ ( 𝐴 ⊔ 1o ) ) |
| 19 |
16 18
|
nsyl3 |
⊢ ( 𝐴 ∈ FinIV → ¬ ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) ) |
| 20 |
|
isfin5-2 |
⊢ ( 𝐴 ∈ FinIV → ( 𝐴 ∈ FinV ↔ ¬ ( 𝐴 ≠ ∅ ∧ 𝐴 ≈ ( 𝐴 ⊔ 𝐴 ) ) ) ) |
| 21 |
19 20
|
mpbird |
⊢ ( 𝐴 ∈ FinIV → 𝐴 ∈ FinV ) |