Step |
Hyp |
Ref |
Expression |
1 |
|
ensym |
⊢ ( 𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴 ) |
2 |
|
bren |
⊢ ( 𝐵 ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝐴 ) |
3 |
|
simpr |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝑥 ⊊ 𝐵 ) → 𝑥 ⊊ 𝐵 ) |
4 |
|
f1of1 |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → 𝑓 : 𝐵 –1-1→ 𝐴 ) |
5 |
|
pssss |
⊢ ( 𝑥 ⊊ 𝐵 → 𝑥 ⊆ 𝐵 ) |
6 |
|
ssid |
⊢ 𝐵 ⊆ 𝐵 |
7 |
5 6
|
jctir |
⊢ ( 𝑥 ⊊ 𝐵 → ( 𝑥 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵 ) ) |
8 |
|
f1imapss |
⊢ ( ( 𝑓 : 𝐵 –1-1→ 𝐴 ∧ ( 𝑥 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐵 ) ) → ( ( 𝑓 “ 𝑥 ) ⊊ ( 𝑓 “ 𝐵 ) ↔ 𝑥 ⊊ 𝐵 ) ) |
9 |
4 7 8
|
syl2an |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝑥 ⊊ 𝐵 ) → ( ( 𝑓 “ 𝑥 ) ⊊ ( 𝑓 “ 𝐵 ) ↔ 𝑥 ⊊ 𝐵 ) ) |
10 |
3 9
|
mpbird |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝑥 ⊊ 𝐵 ) → ( 𝑓 “ 𝑥 ) ⊊ ( 𝑓 “ 𝐵 ) ) |
11 |
|
imadmrn |
⊢ ( 𝑓 “ dom 𝑓 ) = ran 𝑓 |
12 |
|
f1odm |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → dom 𝑓 = 𝐵 ) |
13 |
12
|
imaeq2d |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( 𝑓 “ dom 𝑓 ) = ( 𝑓 “ 𝐵 ) ) |
14 |
|
dff1o5 |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ↔ ( 𝑓 : 𝐵 –1-1→ 𝐴 ∧ ran 𝑓 = 𝐴 ) ) |
15 |
14
|
simprbi |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ran 𝑓 = 𝐴 ) |
16 |
11 13 15
|
3eqtr3a |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( 𝑓 “ 𝐵 ) = 𝐴 ) |
17 |
16
|
adantr |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝑥 ⊊ 𝐵 ) → ( 𝑓 “ 𝐵 ) = 𝐴 ) |
18 |
17
|
psseq2d |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝑥 ⊊ 𝐵 ) → ( ( 𝑓 “ 𝑥 ) ⊊ ( 𝑓 “ 𝐵 ) ↔ ( 𝑓 “ 𝑥 ) ⊊ 𝐴 ) ) |
19 |
10 18
|
mpbid |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝑥 ⊊ 𝐵 ) → ( 𝑓 “ 𝑥 ) ⊊ 𝐴 ) |
20 |
19
|
adantrr |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ( 𝑓 “ 𝑥 ) ⊊ 𝐴 ) |
21 |
|
vex |
⊢ 𝑥 ∈ V |
22 |
21
|
f1imaen |
⊢ ( ( 𝑓 : 𝐵 –1-1→ 𝐴 ∧ 𝑥 ⊆ 𝐵 ) → ( 𝑓 “ 𝑥 ) ≈ 𝑥 ) |
23 |
4 5 22
|
syl2an |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝑥 ⊊ 𝐵 ) → ( 𝑓 “ 𝑥 ) ≈ 𝑥 ) |
24 |
23
|
adantrr |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ( 𝑓 “ 𝑥 ) ≈ 𝑥 ) |
25 |
|
simprr |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → 𝑥 ≈ 𝐵 ) |
26 |
|
entr |
⊢ ( ( ( 𝑓 “ 𝑥 ) ≈ 𝑥 ∧ 𝑥 ≈ 𝐵 ) → ( 𝑓 “ 𝑥 ) ≈ 𝐵 ) |
27 |
24 25 26
|
syl2anc |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ( 𝑓 “ 𝑥 ) ≈ 𝐵 ) |
28 |
|
vex |
⊢ 𝑓 ∈ V |
29 |
|
f1oen3g |
⊢ ( ( 𝑓 ∈ V ∧ 𝑓 : 𝐵 –1-1-onto→ 𝐴 ) → 𝐵 ≈ 𝐴 ) |
30 |
28 29
|
mpan |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → 𝐵 ≈ 𝐴 ) |
31 |
30
|
adantr |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → 𝐵 ≈ 𝐴 ) |
32 |
|
entr |
⊢ ( ( ( 𝑓 “ 𝑥 ) ≈ 𝐵 ∧ 𝐵 ≈ 𝐴 ) → ( 𝑓 “ 𝑥 ) ≈ 𝐴 ) |
33 |
27 31 32
|
syl2anc |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ( 𝑓 “ 𝑥 ) ≈ 𝐴 ) |
34 |
|
fin4i |
⊢ ( ( ( 𝑓 “ 𝑥 ) ⊊ 𝐴 ∧ ( 𝑓 “ 𝑥 ) ≈ 𝐴 ) → ¬ 𝐴 ∈ FinIV ) |
35 |
20 33 34
|
syl2anc |
⊢ ( ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) → ¬ 𝐴 ∈ FinIV ) |
36 |
35
|
ex |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) → ¬ 𝐴 ∈ FinIV ) ) |
37 |
36
|
exlimdv |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( ∃ 𝑥 ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) → ¬ 𝐴 ∈ FinIV ) ) |
38 |
37
|
con2d |
⊢ ( 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( 𝐴 ∈ FinIV → ¬ ∃ 𝑥 ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) ) |
39 |
38
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( 𝐴 ∈ FinIV → ¬ ∃ 𝑥 ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) ) |
40 |
2 39
|
sylbi |
⊢ ( 𝐵 ≈ 𝐴 → ( 𝐴 ∈ FinIV → ¬ ∃ 𝑥 ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) ) |
41 |
|
relen |
⊢ Rel ≈ |
42 |
41
|
brrelex1i |
⊢ ( 𝐵 ≈ 𝐴 → 𝐵 ∈ V ) |
43 |
|
isfin4 |
⊢ ( 𝐵 ∈ V → ( 𝐵 ∈ FinIV ↔ ¬ ∃ 𝑥 ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) ) |
44 |
42 43
|
syl |
⊢ ( 𝐵 ≈ 𝐴 → ( 𝐵 ∈ FinIV ↔ ¬ ∃ 𝑥 ( 𝑥 ⊊ 𝐵 ∧ 𝑥 ≈ 𝐵 ) ) ) |
45 |
40 44
|
sylibrd |
⊢ ( 𝐵 ≈ 𝐴 → ( 𝐴 ∈ FinIV → 𝐵 ∈ FinIV ) ) |
46 |
1 45
|
syl |
⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ∈ FinIV → 𝐵 ∈ FinIV ) ) |