Step |
Hyp |
Ref |
Expression |
1 |
|
isfin4 |
⊢ ( 𝐴 ∈ FinIV → ( 𝐴 ∈ FinIV ↔ ¬ ∃ 𝑥 ( 𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴 ) ) ) |
2 |
1
|
ibi |
⊢ ( 𝐴 ∈ FinIV → ¬ ∃ 𝑥 ( 𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴 ) ) |
3 |
|
relen |
⊢ Rel ≈ |
4 |
3
|
brrelex1i |
⊢ ( 𝑋 ≈ 𝐴 → 𝑋 ∈ V ) |
5 |
4
|
adantl |
⊢ ( ( 𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴 ) → 𝑋 ∈ V ) |
6 |
|
psseq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ⊊ 𝐴 ↔ 𝑋 ⊊ 𝐴 ) ) |
7 |
|
breq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ≈ 𝐴 ↔ 𝑋 ≈ 𝐴 ) ) |
8 |
6 7
|
anbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴 ) ↔ ( 𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴 ) ) ) |
9 |
8
|
spcegv |
⊢ ( 𝑋 ∈ V → ( ( 𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴 ) → ∃ 𝑥 ( 𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴 ) ) ) |
10 |
5 9
|
mpcom |
⊢ ( ( 𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴 ) → ∃ 𝑥 ( 𝑥 ⊊ 𝐴 ∧ 𝑥 ≈ 𝐴 ) ) |
11 |
2 10
|
nsyl3 |
⊢ ( ( 𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴 ) → ¬ 𝐴 ∈ FinIV ) |