Metamath Proof Explorer


Theorem fin4i

Description: Infer that a set is IV-infinite. (Contributed by Stefan O'Rear, 16-May-2015)

Ref Expression
Assertion fin4i ( ( 𝑋𝐴𝑋𝐴 ) → ¬ 𝐴 ∈ FinIV )

Proof

Step Hyp Ref Expression
1 isfin4 ( 𝐴 ∈ FinIV → ( 𝐴 ∈ FinIV ↔ ¬ ∃ 𝑥 ( 𝑥𝐴𝑥𝐴 ) ) )
2 1 ibi ( 𝐴 ∈ FinIV → ¬ ∃ 𝑥 ( 𝑥𝐴𝑥𝐴 ) )
3 relen Rel ≈
4 3 brrelex1i ( 𝑋𝐴𝑋 ∈ V )
5 4 adantl ( ( 𝑋𝐴𝑋𝐴 ) → 𝑋 ∈ V )
6 psseq1 ( 𝑥 = 𝑋 → ( 𝑥𝐴𝑋𝐴 ) )
7 breq1 ( 𝑥 = 𝑋 → ( 𝑥𝐴𝑋𝐴 ) )
8 6 7 anbi12d ( 𝑥 = 𝑋 → ( ( 𝑥𝐴𝑥𝐴 ) ↔ ( 𝑋𝐴𝑋𝐴 ) ) )
9 8 spcegv ( 𝑋 ∈ V → ( ( 𝑋𝐴𝑋𝐴 ) → ∃ 𝑥 ( 𝑥𝐴𝑥𝐴 ) ) )
10 5 9 mpcom ( ( 𝑋𝐴𝑋𝐴 ) → ∃ 𝑥 ( 𝑥𝐴𝑥𝐴 ) )
11 2 10 nsyl3 ( ( 𝑋𝐴𝑋𝐴 ) → ¬ 𝐴 ∈ FinIV )