Step |
Hyp |
Ref |
Expression |
1 |
|
orc |
⊢ ( 𝐴 = ∅ → ( 𝐴 = ∅ ∨ 𝐴 ≈ 1o ) ) |
2 |
|
sdom2en01 |
⊢ ( 𝐴 ≺ 2o ↔ ( 𝐴 = ∅ ∨ 𝐴 ≈ 1o ) ) |
3 |
1 2
|
sylibr |
⊢ ( 𝐴 = ∅ → 𝐴 ≺ 2o ) |
4 |
3
|
orcd |
⊢ ( 𝐴 = ∅ → ( 𝐴 ≺ 2o ∨ 𝐴 ≺ ( 𝐴 × 𝐴 ) ) ) |
5 |
|
onfin2 |
⊢ ω = ( On ∩ Fin ) |
6 |
|
inss2 |
⊢ ( On ∩ Fin ) ⊆ Fin |
7 |
5 6
|
eqsstri |
⊢ ω ⊆ Fin |
8 |
|
2onn |
⊢ 2o ∈ ω |
9 |
7 8
|
sselii |
⊢ 2o ∈ Fin |
10 |
|
relsdom |
⊢ Rel ≺ |
11 |
10
|
brrelex1i |
⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) → 𝐴 ∈ V ) |
12 |
|
fidomtri |
⊢ ( ( 2o ∈ Fin ∧ 𝐴 ∈ V ) → ( 2o ≼ 𝐴 ↔ ¬ 𝐴 ≺ 2o ) ) |
13 |
9 11 12
|
sylancr |
⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) → ( 2o ≼ 𝐴 ↔ ¬ 𝐴 ≺ 2o ) ) |
14 |
|
xp2dju |
⊢ ( 2o × 𝐴 ) = ( 𝐴 ⊔ 𝐴 ) |
15 |
|
xpdom1g |
⊢ ( ( 𝐴 ∈ V ∧ 2o ≼ 𝐴 ) → ( 2o × 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) |
16 |
11 15
|
sylan |
⊢ ( ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ∧ 2o ≼ 𝐴 ) → ( 2o × 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) |
17 |
14 16
|
eqbrtrrid |
⊢ ( ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ∧ 2o ≼ 𝐴 ) → ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) |
18 |
|
sdomdomtr |
⊢ ( ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ∧ ( 𝐴 ⊔ 𝐴 ) ≼ ( 𝐴 × 𝐴 ) ) → 𝐴 ≺ ( 𝐴 × 𝐴 ) ) |
19 |
17 18
|
syldan |
⊢ ( ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ∧ 2o ≼ 𝐴 ) → 𝐴 ≺ ( 𝐴 × 𝐴 ) ) |
20 |
19
|
ex |
⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) → ( 2o ≼ 𝐴 → 𝐴 ≺ ( 𝐴 × 𝐴 ) ) ) |
21 |
13 20
|
sylbird |
⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) → ( ¬ 𝐴 ≺ 2o → 𝐴 ≺ ( 𝐴 × 𝐴 ) ) ) |
22 |
21
|
orrd |
⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) → ( 𝐴 ≺ 2o ∨ 𝐴 ≺ ( 𝐴 × 𝐴 ) ) ) |
23 |
4 22
|
jaoi |
⊢ ( ( 𝐴 = ∅ ∨ 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ) → ( 𝐴 ≺ 2o ∨ 𝐴 ≺ ( 𝐴 × 𝐴 ) ) ) |
24 |
|
isfin5 |
⊢ ( 𝐴 ∈ FinV ↔ ( 𝐴 = ∅ ∨ 𝐴 ≺ ( 𝐴 ⊔ 𝐴 ) ) ) |
25 |
|
isfin6 |
⊢ ( 𝐴 ∈ FinVI ↔ ( 𝐴 ≺ 2o ∨ 𝐴 ≺ ( 𝐴 × 𝐴 ) ) ) |
26 |
23 24 25
|
3imtr4i |
⊢ ( 𝐴 ∈ FinV → 𝐴 ∈ FinVI ) |