| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isfin6 |
⊢ ( 𝐴 ∈ FinVI ↔ ( 𝐴 ≺ 2o ∨ 𝐴 ≺ ( 𝐴 × 𝐴 ) ) ) |
| 2 |
|
2onn |
⊢ 2o ∈ ω |
| 3 |
|
ssid |
⊢ 2o ⊆ 2o |
| 4 |
|
ssnnfi |
⊢ ( ( 2o ∈ ω ∧ 2o ⊆ 2o ) → 2o ∈ Fin ) |
| 5 |
2 3 4
|
mp2an |
⊢ 2o ∈ Fin |
| 6 |
|
sdomdom |
⊢ ( 𝐴 ≺ 2o → 𝐴 ≼ 2o ) |
| 7 |
|
domfi |
⊢ ( ( 2o ∈ Fin ∧ 𝐴 ≼ 2o ) → 𝐴 ∈ Fin ) |
| 8 |
5 6 7
|
sylancr |
⊢ ( 𝐴 ≺ 2o → 𝐴 ∈ Fin ) |
| 9 |
|
fin17 |
⊢ ( 𝐴 ∈ Fin → 𝐴 ∈ FinVII ) |
| 10 |
8 9
|
syl |
⊢ ( 𝐴 ≺ 2o → 𝐴 ∈ FinVII ) |
| 11 |
|
sdomnen |
⊢ ( 𝐴 ≺ ( 𝐴 × 𝐴 ) → ¬ 𝐴 ≈ ( 𝐴 × 𝐴 ) ) |
| 12 |
|
eldifi |
⊢ ( 𝑏 ∈ ( On ∖ ω ) → 𝑏 ∈ On ) |
| 13 |
|
ensym |
⊢ ( 𝐴 ≈ 𝑏 → 𝑏 ≈ 𝐴 ) |
| 14 |
|
isnumi |
⊢ ( ( 𝑏 ∈ On ∧ 𝑏 ≈ 𝐴 ) → 𝐴 ∈ dom card ) |
| 15 |
12 13 14
|
syl2an |
⊢ ( ( 𝑏 ∈ ( On ∖ ω ) ∧ 𝐴 ≈ 𝑏 ) → 𝐴 ∈ dom card ) |
| 16 |
|
vex |
⊢ 𝑏 ∈ V |
| 17 |
|
eldif |
⊢ ( 𝑏 ∈ ( On ∖ ω ) ↔ ( 𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω ) ) |
| 18 |
|
ordom |
⊢ Ord ω |
| 19 |
|
eloni |
⊢ ( 𝑏 ∈ On → Ord 𝑏 ) |
| 20 |
|
ordtri1 |
⊢ ( ( Ord ω ∧ Ord 𝑏 ) → ( ω ⊆ 𝑏 ↔ ¬ 𝑏 ∈ ω ) ) |
| 21 |
18 19 20
|
sylancr |
⊢ ( 𝑏 ∈ On → ( ω ⊆ 𝑏 ↔ ¬ 𝑏 ∈ ω ) ) |
| 22 |
21
|
biimpar |
⊢ ( ( 𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω ) → ω ⊆ 𝑏 ) |
| 23 |
17 22
|
sylbi |
⊢ ( 𝑏 ∈ ( On ∖ ω ) → ω ⊆ 𝑏 ) |
| 24 |
|
ssdomg |
⊢ ( 𝑏 ∈ V → ( ω ⊆ 𝑏 → ω ≼ 𝑏 ) ) |
| 25 |
16 23 24
|
mpsyl |
⊢ ( 𝑏 ∈ ( On ∖ ω ) → ω ≼ 𝑏 ) |
| 26 |
|
domen2 |
⊢ ( 𝐴 ≈ 𝑏 → ( ω ≼ 𝐴 ↔ ω ≼ 𝑏 ) ) |
| 27 |
25 26
|
imbitrrid |
⊢ ( 𝐴 ≈ 𝑏 → ( 𝑏 ∈ ( On ∖ ω ) → ω ≼ 𝐴 ) ) |
| 28 |
27
|
impcom |
⊢ ( ( 𝑏 ∈ ( On ∖ ω ) ∧ 𝐴 ≈ 𝑏 ) → ω ≼ 𝐴 ) |
| 29 |
|
infxpidm2 |
⊢ ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) |
| 30 |
15 28 29
|
syl2anc |
⊢ ( ( 𝑏 ∈ ( On ∖ ω ) ∧ 𝐴 ≈ 𝑏 ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 ) |
| 31 |
|
ensym |
⊢ ( ( 𝐴 × 𝐴 ) ≈ 𝐴 → 𝐴 ≈ ( 𝐴 × 𝐴 ) ) |
| 32 |
30 31
|
syl |
⊢ ( ( 𝑏 ∈ ( On ∖ ω ) ∧ 𝐴 ≈ 𝑏 ) → 𝐴 ≈ ( 𝐴 × 𝐴 ) ) |
| 33 |
32
|
rexlimiva |
⊢ ( ∃ 𝑏 ∈ ( On ∖ ω ) 𝐴 ≈ 𝑏 → 𝐴 ≈ ( 𝐴 × 𝐴 ) ) |
| 34 |
11 33
|
nsyl |
⊢ ( 𝐴 ≺ ( 𝐴 × 𝐴 ) → ¬ ∃ 𝑏 ∈ ( On ∖ ω ) 𝐴 ≈ 𝑏 ) |
| 35 |
|
relsdom |
⊢ Rel ≺ |
| 36 |
35
|
brrelex1i |
⊢ ( 𝐴 ≺ ( 𝐴 × 𝐴 ) → 𝐴 ∈ V ) |
| 37 |
|
isfin7 |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ FinVII ↔ ¬ ∃ 𝑏 ∈ ( On ∖ ω ) 𝐴 ≈ 𝑏 ) ) |
| 38 |
36 37
|
syl |
⊢ ( 𝐴 ≺ ( 𝐴 × 𝐴 ) → ( 𝐴 ∈ FinVII ↔ ¬ ∃ 𝑏 ∈ ( On ∖ ω ) 𝐴 ≈ 𝑏 ) ) |
| 39 |
34 38
|
mpbird |
⊢ ( 𝐴 ≺ ( 𝐴 × 𝐴 ) → 𝐴 ∈ FinVII ) |
| 40 |
10 39
|
jaoi |
⊢ ( ( 𝐴 ≺ 2o ∨ 𝐴 ≺ ( 𝐴 × 𝐴 ) ) → 𝐴 ∈ FinVII ) |
| 41 |
1 40
|
sylbi |
⊢ ( 𝐴 ∈ FinVI → 𝐴 ∈ FinVII ) |