Metamath Proof Explorer


Theorem fin67

Description: Every VI-finite set is VII-finite. (Contributed by Stefan O'Rear, 29-Oct-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion fin67 ( 𝐴 ∈ FinVI𝐴 ∈ FinVII )

Proof

Step Hyp Ref Expression
1 isfin6 ( 𝐴 ∈ FinVI ↔ ( 𝐴 ≺ 2o𝐴 ≺ ( 𝐴 × 𝐴 ) ) )
2 2onn 2o ∈ ω
3 ssid 2o ⊆ 2o
4 ssnnfi ( ( 2o ∈ ω ∧ 2o ⊆ 2o ) → 2o ∈ Fin )
5 2 3 4 mp2an 2o ∈ Fin
6 sdomdom ( 𝐴 ≺ 2o𝐴 ≼ 2o )
7 domfi ( ( 2o ∈ Fin ∧ 𝐴 ≼ 2o ) → 𝐴 ∈ Fin )
8 5 6 7 sylancr ( 𝐴 ≺ 2o𝐴 ∈ Fin )
9 fin17 ( 𝐴 ∈ Fin → 𝐴 ∈ FinVII )
10 8 9 syl ( 𝐴 ≺ 2o𝐴 ∈ FinVII )
11 sdomnen ( 𝐴 ≺ ( 𝐴 × 𝐴 ) → ¬ 𝐴 ≈ ( 𝐴 × 𝐴 ) )
12 eldifi ( 𝑏 ∈ ( On ∖ ω ) → 𝑏 ∈ On )
13 ensym ( 𝐴𝑏𝑏𝐴 )
14 isnumi ( ( 𝑏 ∈ On ∧ 𝑏𝐴 ) → 𝐴 ∈ dom card )
15 12 13 14 syl2an ( ( 𝑏 ∈ ( On ∖ ω ) ∧ 𝐴𝑏 ) → 𝐴 ∈ dom card )
16 vex 𝑏 ∈ V
17 eldif ( 𝑏 ∈ ( On ∖ ω ) ↔ ( 𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω ) )
18 ordom Ord ω
19 eloni ( 𝑏 ∈ On → Ord 𝑏 )
20 ordtri1 ( ( Ord ω ∧ Ord 𝑏 ) → ( ω ⊆ 𝑏 ↔ ¬ 𝑏 ∈ ω ) )
21 18 19 20 sylancr ( 𝑏 ∈ On → ( ω ⊆ 𝑏 ↔ ¬ 𝑏 ∈ ω ) )
22 21 biimpar ( ( 𝑏 ∈ On ∧ ¬ 𝑏 ∈ ω ) → ω ⊆ 𝑏 )
23 17 22 sylbi ( 𝑏 ∈ ( On ∖ ω ) → ω ⊆ 𝑏 )
24 ssdomg ( 𝑏 ∈ V → ( ω ⊆ 𝑏 → ω ≼ 𝑏 ) )
25 16 23 24 mpsyl ( 𝑏 ∈ ( On ∖ ω ) → ω ≼ 𝑏 )
26 domen2 ( 𝐴𝑏 → ( ω ≼ 𝐴 ↔ ω ≼ 𝑏 ) )
27 25 26 syl5ibr ( 𝐴𝑏 → ( 𝑏 ∈ ( On ∖ ω ) → ω ≼ 𝐴 ) )
28 27 impcom ( ( 𝑏 ∈ ( On ∖ ω ) ∧ 𝐴𝑏 ) → ω ≼ 𝐴 )
29 infxpidm2 ( ( 𝐴 ∈ dom card ∧ ω ≼ 𝐴 ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 )
30 15 28 29 syl2anc ( ( 𝑏 ∈ ( On ∖ ω ) ∧ 𝐴𝑏 ) → ( 𝐴 × 𝐴 ) ≈ 𝐴 )
31 ensym ( ( 𝐴 × 𝐴 ) ≈ 𝐴𝐴 ≈ ( 𝐴 × 𝐴 ) )
32 30 31 syl ( ( 𝑏 ∈ ( On ∖ ω ) ∧ 𝐴𝑏 ) → 𝐴 ≈ ( 𝐴 × 𝐴 ) )
33 32 rexlimiva ( ∃ 𝑏 ∈ ( On ∖ ω ) 𝐴𝑏𝐴 ≈ ( 𝐴 × 𝐴 ) )
34 11 33 nsyl ( 𝐴 ≺ ( 𝐴 × 𝐴 ) → ¬ ∃ 𝑏 ∈ ( On ∖ ω ) 𝐴𝑏 )
35 relsdom Rel ≺
36 35 brrelex1i ( 𝐴 ≺ ( 𝐴 × 𝐴 ) → 𝐴 ∈ V )
37 isfin7 ( 𝐴 ∈ V → ( 𝐴 ∈ FinVII ↔ ¬ ∃ 𝑏 ∈ ( On ∖ ω ) 𝐴𝑏 ) )
38 36 37 syl ( 𝐴 ≺ ( 𝐴 × 𝐴 ) → ( 𝐴 ∈ FinVII ↔ ¬ ∃ 𝑏 ∈ ( On ∖ ω ) 𝐴𝑏 ) )
39 34 38 mpbird ( 𝐴 ≺ ( 𝐴 × 𝐴 ) → 𝐴 ∈ FinVII )
40 10 39 jaoi ( ( 𝐴 ≺ 2o𝐴 ≺ ( 𝐴 × 𝐴 ) ) → 𝐴 ∈ FinVII )
41 1 40 sylbi ( 𝐴 ∈ FinVI𝐴 ∈ FinVII )