Step |
Hyp |
Ref |
Expression |
1 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m 𝐴 ) → 𝑓 : 𝐴 ⟶ ( 𝒫 𝑥 ∖ { ∅ } ) ) |
2 |
1
|
adantl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m 𝐴 ) ) → 𝑓 : 𝐴 ⟶ ( 𝒫 𝑥 ∖ { ∅ } ) ) |
3 |
|
ffvelrn |
⊢ ( ( 𝑓 : 𝐴 ⟶ ( 𝒫 𝑥 ∖ { ∅ } ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑦 ) ∈ ( 𝒫 𝑥 ∖ { ∅ } ) ) |
4 |
|
eldifsni |
⊢ ( ( 𝑓 ‘ 𝑦 ) ∈ ( 𝒫 𝑥 ∖ { ∅ } ) → ( 𝑓 ‘ 𝑦 ) ≠ ∅ ) |
5 |
3 4
|
syl |
⊢ ( ( 𝑓 : 𝐴 ⟶ ( 𝒫 𝑥 ∖ { ∅ } ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑦 ) ≠ ∅ ) |
6 |
|
n0 |
⊢ ( ( 𝑓 ‘ 𝑦 ) ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ ( 𝑓 ‘ 𝑦 ) ) |
7 |
5 6
|
sylib |
⊢ ( ( 𝑓 : 𝐴 ⟶ ( 𝒫 𝑥 ∖ { ∅ } ) ∧ 𝑦 ∈ 𝐴 ) → ∃ 𝑧 𝑧 ∈ ( 𝑓 ‘ 𝑦 ) ) |
8 |
|
rexv |
⊢ ( ∃ 𝑧 ∈ V 𝑧 ∈ ( 𝑓 ‘ 𝑦 ) ↔ ∃ 𝑧 𝑧 ∈ ( 𝑓 ‘ 𝑦 ) ) |
9 |
7 8
|
sylibr |
⊢ ( ( 𝑓 : 𝐴 ⟶ ( 𝒫 𝑥 ∖ { ∅ } ) ∧ 𝑦 ∈ 𝐴 ) → ∃ 𝑧 ∈ V 𝑧 ∈ ( 𝑓 ‘ 𝑦 ) ) |
10 |
9
|
ralrimiva |
⊢ ( 𝑓 : 𝐴 ⟶ ( 𝒫 𝑥 ∖ { ∅ } ) → ∀ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ V 𝑧 ∈ ( 𝑓 ‘ 𝑦 ) ) |
11 |
2 10
|
syl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∀ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ V 𝑧 ∈ ( 𝑓 ‘ 𝑦 ) ) |
12 |
|
eleq1 |
⊢ ( 𝑧 = ( 𝑔 ‘ 𝑦 ) → ( 𝑧 ∈ ( 𝑓 ‘ 𝑦 ) ↔ ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) |
13 |
12
|
ac6sfi |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑦 ∈ 𝐴 ∃ 𝑧 ∈ V 𝑧 ∈ ( 𝑓 ‘ 𝑦 ) ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ V ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) |
14 |
11 13
|
syldan |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ V ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) |
15 |
|
exsimpr |
⊢ ( ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ V ∧ ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) → ∃ 𝑔 ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) |
16 |
14 15
|
syl |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m 𝐴 ) ) → ∃ 𝑔 ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) |
17 |
16
|
ralrimiva |
⊢ ( 𝐴 ∈ Fin → ∀ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) |
18 |
|
vex |
⊢ 𝑥 ∈ V |
19 |
|
isacn |
⊢ ( ( 𝑥 ∈ V ∧ 𝐴 ∈ Fin ) → ( 𝑥 ∈ AC 𝐴 ↔ ∀ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) |
20 |
18 19
|
mpan |
⊢ ( 𝐴 ∈ Fin → ( 𝑥 ∈ AC 𝐴 ↔ ∀ 𝑓 ∈ ( ( 𝒫 𝑥 ∖ { ∅ } ) ↑m 𝐴 ) ∃ 𝑔 ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) ∈ ( 𝑓 ‘ 𝑦 ) ) ) |
21 |
17 20
|
mpbird |
⊢ ( 𝐴 ∈ Fin → 𝑥 ∈ AC 𝐴 ) |
22 |
18
|
a1i |
⊢ ( 𝐴 ∈ Fin → 𝑥 ∈ V ) |
23 |
21 22
|
2thd |
⊢ ( 𝐴 ∈ Fin → ( 𝑥 ∈ AC 𝐴 ↔ 𝑥 ∈ V ) ) |
24 |
23
|
eqrdv |
⊢ ( 𝐴 ∈ Fin → AC 𝐴 = V ) |