| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elmapi | ⊢ ( 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  𝐴 )  →  𝑓 : 𝐴 ⟶ ( 𝒫  𝑥  ∖  { ∅ } ) ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  𝐴 ) )  →  𝑓 : 𝐴 ⟶ ( 𝒫  𝑥  ∖  { ∅ } ) ) | 
						
							| 3 |  | ffvelcdm | ⊢ ( ( 𝑓 : 𝐴 ⟶ ( 𝒫  𝑥  ∖  { ∅ } )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑦 )  ∈  ( 𝒫  𝑥  ∖  { ∅ } ) ) | 
						
							| 4 |  | eldifsni | ⊢ ( ( 𝑓 ‘ 𝑦 )  ∈  ( 𝒫  𝑥  ∖  { ∅ } )  →  ( 𝑓 ‘ 𝑦 )  ≠  ∅ ) | 
						
							| 5 | 3 4 | syl | ⊢ ( ( 𝑓 : 𝐴 ⟶ ( 𝒫  𝑥  ∖  { ∅ } )  ∧  𝑦  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑦 )  ≠  ∅ ) | 
						
							| 6 |  | n0 | ⊢ ( ( 𝑓 ‘ 𝑦 )  ≠  ∅  ↔  ∃ 𝑧 𝑧  ∈  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 7 | 5 6 | sylib | ⊢ ( ( 𝑓 : 𝐴 ⟶ ( 𝒫  𝑥  ∖  { ∅ } )  ∧  𝑦  ∈  𝐴 )  →  ∃ 𝑧 𝑧  ∈  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 8 |  | rexv | ⊢ ( ∃ 𝑧  ∈  V 𝑧  ∈  ( 𝑓 ‘ 𝑦 )  ↔  ∃ 𝑧 𝑧  ∈  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 9 | 7 8 | sylibr | ⊢ ( ( 𝑓 : 𝐴 ⟶ ( 𝒫  𝑥  ∖  { ∅ } )  ∧  𝑦  ∈  𝐴 )  →  ∃ 𝑧  ∈  V 𝑧  ∈  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 10 | 9 | ralrimiva | ⊢ ( 𝑓 : 𝐴 ⟶ ( 𝒫  𝑥  ∖  { ∅ } )  →  ∀ 𝑦  ∈  𝐴 ∃ 𝑧  ∈  V 𝑧  ∈  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 11 | 2 10 | syl | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  𝐴 ) )  →  ∀ 𝑦  ∈  𝐴 ∃ 𝑧  ∈  V 𝑧  ∈  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 12 |  | eleq1 | ⊢ ( 𝑧  =  ( 𝑔 ‘ 𝑦 )  →  ( 𝑧  ∈  ( 𝑓 ‘ 𝑦 )  ↔  ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 13 | 12 | ac6sfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑦  ∈  𝐴 ∃ 𝑧  ∈  V 𝑧  ∈  ( 𝑓 ‘ 𝑦 ) )  →  ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ V  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 14 | 11 13 | syldan | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  𝐴 ) )  →  ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ V  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 15 |  | exsimpr | ⊢ ( ∃ 𝑔 ( 𝑔 : 𝐴 ⟶ V  ∧  ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) )  →  ∃ 𝑔 ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  𝐴 ) )  →  ∃ 𝑔 ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 17 | 16 | ralrimiva | ⊢ ( 𝐴  ∈  Fin  →  ∀ 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 18 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 19 |  | isacn | ⊢ ( ( 𝑥  ∈  V  ∧  𝐴  ∈  Fin )  →  ( 𝑥  ∈  AC  𝐴  ↔  ∀ 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 20 | 18 19 | mpan | ⊢ ( 𝐴  ∈  Fin  →  ( 𝑥  ∈  AC  𝐴  ↔  ∀ 𝑓  ∈  ( ( 𝒫  𝑥  ∖  { ∅ } )  ↑m  𝐴 ) ∃ 𝑔 ∀ 𝑦  ∈  𝐴 ( 𝑔 ‘ 𝑦 )  ∈  ( 𝑓 ‘ 𝑦 ) ) ) | 
						
							| 21 | 17 20 | mpbird | ⊢ ( 𝐴  ∈  Fin  →  𝑥  ∈  AC  𝐴 ) | 
						
							| 22 | 18 | a1i | ⊢ ( 𝐴  ∈  Fin  →  𝑥  ∈  V ) | 
						
							| 23 | 21 22 | 2thd | ⊢ ( 𝐴  ∈  Fin  →  ( 𝑥  ∈  AC  𝐴  ↔  𝑥  ∈  V ) ) | 
						
							| 24 | 23 | eqrdv | ⊢ ( 𝐴  ∈  Fin  →  AC  𝐴  =  V ) |