| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elinel1 |
⊢ ( 𝐽 ∈ ( Top ∩ Fin ) → 𝐽 ∈ Top ) |
| 2 |
|
elinel2 |
⊢ ( 𝐽 ∈ ( Top ∩ Fin ) → 𝐽 ∈ Fin ) |
| 3 |
|
vex |
⊢ 𝑦 ∈ V |
| 4 |
3
|
pwid |
⊢ 𝑦 ∈ 𝒫 𝑦 |
| 5 |
|
velpw |
⊢ ( 𝑦 ∈ 𝒫 𝐽 ↔ 𝑦 ⊆ 𝐽 ) |
| 6 |
|
ssfi |
⊢ ( ( 𝐽 ∈ Fin ∧ 𝑦 ⊆ 𝐽 ) → 𝑦 ∈ Fin ) |
| 7 |
5 6
|
sylan2b |
⊢ ( ( 𝐽 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝐽 ) → 𝑦 ∈ Fin ) |
| 8 |
|
elin |
⊢ ( 𝑦 ∈ ( 𝒫 𝑦 ∩ Fin ) ↔ ( 𝑦 ∈ 𝒫 𝑦 ∧ 𝑦 ∈ Fin ) ) |
| 9 |
|
unieq |
⊢ ( 𝑧 = 𝑦 → ∪ 𝑧 = ∪ 𝑦 ) |
| 10 |
9
|
rspceeqv |
⊢ ( ( 𝑦 ∈ ( 𝒫 𝑦 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑦 ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) |
| 11 |
10
|
ex |
⊢ ( 𝑦 ∈ ( 𝒫 𝑦 ∩ Fin ) → ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) ) |
| 12 |
8 11
|
sylbir |
⊢ ( ( 𝑦 ∈ 𝒫 𝑦 ∧ 𝑦 ∈ Fin ) → ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) ) |
| 13 |
4 7 12
|
sylancr |
⊢ ( ( 𝐽 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝐽 ) → ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) ) |
| 14 |
13
|
ralrimiva |
⊢ ( 𝐽 ∈ Fin → ∀ 𝑦 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) ) |
| 15 |
2 14
|
syl |
⊢ ( 𝐽 ∈ ( Top ∩ Fin ) → ∀ 𝑦 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) ) |
| 16 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 17 |
16
|
iscmp |
⊢ ( 𝐽 ∈ Comp ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) ) ) |
| 18 |
1 15 17
|
sylanbrc |
⊢ ( 𝐽 ∈ ( Top ∩ Fin ) → 𝐽 ∈ Comp ) |