| Step |
Hyp |
Ref |
Expression |
| 1 |
|
findcard.1 |
⊢ ( 𝑥 = ∅ → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
findcard.2 |
⊢ ( 𝑥 = ( 𝑦 ∖ { 𝑧 } ) → ( 𝜑 ↔ 𝜒 ) ) |
| 3 |
|
findcard.3 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜃 ) ) |
| 4 |
|
findcard.4 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) |
| 5 |
|
findcard.5 |
⊢ 𝜓 |
| 6 |
|
findcard.6 |
⊢ ( 𝑦 ∈ Fin → ( ∀ 𝑧 ∈ 𝑦 𝜒 → 𝜃 ) ) |
| 7 |
|
isfi |
⊢ ( 𝑥 ∈ Fin ↔ ∃ 𝑤 ∈ ω 𝑥 ≈ 𝑤 ) |
| 8 |
|
breq2 |
⊢ ( 𝑤 = ∅ → ( 𝑥 ≈ 𝑤 ↔ 𝑥 ≈ ∅ ) ) |
| 9 |
8
|
imbi1d |
⊢ ( 𝑤 = ∅ → ( ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ( 𝑥 ≈ ∅ → 𝜑 ) ) ) |
| 10 |
9
|
albidv |
⊢ ( 𝑤 = ∅ → ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ≈ ∅ → 𝜑 ) ) ) |
| 11 |
|
breq2 |
⊢ ( 𝑤 = 𝑣 → ( 𝑥 ≈ 𝑤 ↔ 𝑥 ≈ 𝑣 ) ) |
| 12 |
11
|
imbi1d |
⊢ ( 𝑤 = 𝑣 → ( ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ( 𝑥 ≈ 𝑣 → 𝜑 ) ) ) |
| 13 |
12
|
albidv |
⊢ ( 𝑤 = 𝑣 → ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) ) ) |
| 14 |
|
breq2 |
⊢ ( 𝑤 = suc 𝑣 → ( 𝑥 ≈ 𝑤 ↔ 𝑥 ≈ suc 𝑣 ) ) |
| 15 |
14
|
imbi1d |
⊢ ( 𝑤 = suc 𝑣 → ( ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ( 𝑥 ≈ suc 𝑣 → 𝜑 ) ) ) |
| 16 |
15
|
albidv |
⊢ ( 𝑤 = suc 𝑣 → ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ≈ suc 𝑣 → 𝜑 ) ) ) |
| 17 |
|
en0 |
⊢ ( 𝑥 ≈ ∅ ↔ 𝑥 = ∅ ) |
| 18 |
5 1
|
mpbiri |
⊢ ( 𝑥 = ∅ → 𝜑 ) |
| 19 |
17 18
|
sylbi |
⊢ ( 𝑥 ≈ ∅ → 𝜑 ) |
| 20 |
19
|
ax-gen |
⊢ ∀ 𝑥 ( 𝑥 ≈ ∅ → 𝜑 ) |
| 21 |
|
peano2 |
⊢ ( 𝑣 ∈ ω → suc 𝑣 ∈ ω ) |
| 22 |
|
breq2 |
⊢ ( 𝑤 = suc 𝑣 → ( 𝑦 ≈ 𝑤 ↔ 𝑦 ≈ suc 𝑣 ) ) |
| 23 |
22
|
rspcev |
⊢ ( ( suc 𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣 ) → ∃ 𝑤 ∈ ω 𝑦 ≈ 𝑤 ) |
| 24 |
21 23
|
sylan |
⊢ ( ( 𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣 ) → ∃ 𝑤 ∈ ω 𝑦 ≈ 𝑤 ) |
| 25 |
|
isfi |
⊢ ( 𝑦 ∈ Fin ↔ ∃ 𝑤 ∈ ω 𝑦 ≈ 𝑤 ) |
| 26 |
24 25
|
sylibr |
⊢ ( ( 𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣 ) → 𝑦 ∈ Fin ) |
| 27 |
26
|
3adant2 |
⊢ ( ( 𝑣 ∈ ω ∧ ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) ∧ 𝑦 ≈ suc 𝑣 ) → 𝑦 ∈ Fin ) |
| 28 |
|
dif1ennn |
⊢ ( ( 𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣 ∧ 𝑧 ∈ 𝑦 ) → ( 𝑦 ∖ { 𝑧 } ) ≈ 𝑣 ) |
| 29 |
28
|
3expa |
⊢ ( ( ( 𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣 ) ∧ 𝑧 ∈ 𝑦 ) → ( 𝑦 ∖ { 𝑧 } ) ≈ 𝑣 ) |
| 30 |
|
vex |
⊢ 𝑦 ∈ V |
| 31 |
30
|
difexi |
⊢ ( 𝑦 ∖ { 𝑧 } ) ∈ V |
| 32 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑦 ∖ { 𝑧 } ) → ( 𝑥 ≈ 𝑣 ↔ ( 𝑦 ∖ { 𝑧 } ) ≈ 𝑣 ) ) |
| 33 |
32 2
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ∖ { 𝑧 } ) → ( ( 𝑥 ≈ 𝑣 → 𝜑 ) ↔ ( ( 𝑦 ∖ { 𝑧 } ) ≈ 𝑣 → 𝜒 ) ) ) |
| 34 |
31 33
|
spcv |
⊢ ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → ( ( 𝑦 ∖ { 𝑧 } ) ≈ 𝑣 → 𝜒 ) ) |
| 35 |
29 34
|
syl5com |
⊢ ( ( ( 𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣 ) ∧ 𝑧 ∈ 𝑦 ) → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → 𝜒 ) ) |
| 36 |
35
|
ralrimdva |
⊢ ( ( 𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣 ) → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → ∀ 𝑧 ∈ 𝑦 𝜒 ) ) |
| 37 |
36
|
imp |
⊢ ( ( ( 𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣 ) ∧ ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) ) → ∀ 𝑧 ∈ 𝑦 𝜒 ) |
| 38 |
37
|
an32s |
⊢ ( ( ( 𝑣 ∈ ω ∧ ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) ) ∧ 𝑦 ≈ suc 𝑣 ) → ∀ 𝑧 ∈ 𝑦 𝜒 ) |
| 39 |
38
|
3impa |
⊢ ( ( 𝑣 ∈ ω ∧ ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) ∧ 𝑦 ≈ suc 𝑣 ) → ∀ 𝑧 ∈ 𝑦 𝜒 ) |
| 40 |
27 39 6
|
sylc |
⊢ ( ( 𝑣 ∈ ω ∧ ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) ∧ 𝑦 ≈ suc 𝑣 ) → 𝜃 ) |
| 41 |
40
|
3exp |
⊢ ( 𝑣 ∈ ω → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → ( 𝑦 ≈ suc 𝑣 → 𝜃 ) ) ) |
| 42 |
41
|
alrimdv |
⊢ ( 𝑣 ∈ ω → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → ∀ 𝑦 ( 𝑦 ≈ suc 𝑣 → 𝜃 ) ) ) |
| 43 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≈ suc 𝑣 ↔ 𝑦 ≈ suc 𝑣 ) ) |
| 44 |
43 3
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ≈ suc 𝑣 → 𝜑 ) ↔ ( 𝑦 ≈ suc 𝑣 → 𝜃 ) ) ) |
| 45 |
44
|
cbvalvw |
⊢ ( ∀ 𝑥 ( 𝑥 ≈ suc 𝑣 → 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ≈ suc 𝑣 → 𝜃 ) ) |
| 46 |
42 45
|
imbitrrdi |
⊢ ( 𝑣 ∈ ω → ( ∀ 𝑥 ( 𝑥 ≈ 𝑣 → 𝜑 ) → ∀ 𝑥 ( 𝑥 ≈ suc 𝑣 → 𝜑 ) ) ) |
| 47 |
10 13 16 20 46
|
finds1 |
⊢ ( 𝑤 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ) |
| 48 |
47
|
19.21bi |
⊢ ( 𝑤 ∈ ω → ( 𝑥 ≈ 𝑤 → 𝜑 ) ) |
| 49 |
48
|
rexlimiv |
⊢ ( ∃ 𝑤 ∈ ω 𝑥 ≈ 𝑤 → 𝜑 ) |
| 50 |
7 49
|
sylbi |
⊢ ( 𝑥 ∈ Fin → 𝜑 ) |
| 51 |
4 50
|
vtoclga |
⊢ ( 𝐴 ∈ Fin → 𝜏 ) |