Step |
Hyp |
Ref |
Expression |
1 |
|
findcard2d.ch |
⊢ ( 𝑥 = ∅ → ( 𝜓 ↔ 𝜒 ) ) |
2 |
|
findcard2d.th |
⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜃 ) ) |
3 |
|
findcard2d.ta |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝜓 ↔ 𝜏 ) ) |
4 |
|
findcard2d.et |
⊢ ( 𝑥 = 𝐴 → ( 𝜓 ↔ 𝜂 ) ) |
5 |
|
findcard2d.z |
⊢ ( 𝜑 → 𝜒 ) |
6 |
|
findcard2d.i |
⊢ ( ( 𝜑 ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) ) → ( 𝜃 → 𝜏 ) ) |
7 |
|
findcard2d.a |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
8 |
|
ssid |
⊢ 𝐴 ⊆ 𝐴 |
9 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) → 𝐴 ∈ Fin ) |
10 |
|
sseq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) |
11 |
10
|
anbi2d |
⊢ ( 𝑥 = ∅ → ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) ↔ ( 𝜑 ∧ ∅ ⊆ 𝐴 ) ) ) |
12 |
11 1
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → 𝜓 ) ↔ ( ( 𝜑 ∧ ∅ ⊆ 𝐴 ) → 𝜒 ) ) ) |
13 |
|
sseq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) |
14 |
13
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) ↔ ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) ) ) |
15 |
14 2
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → 𝜓 ) ↔ ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) → 𝜃 ) ) ) |
16 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ⊆ 𝐴 ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) |
17 |
16
|
anbi2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) ↔ ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) ) |
18 |
17 3
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → 𝜓 ) ↔ ( ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → 𝜏 ) ) ) |
19 |
|
sseq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) |
20 |
19
|
anbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) ↔ ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) ) ) |
21 |
20 4
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → 𝜓 ) ↔ ( ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) → 𝜂 ) ) ) |
22 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ∅ ⊆ 𝐴 ) → 𝜒 ) |
23 |
|
simprl |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → 𝜑 ) |
24 |
|
simprr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) |
25 |
24
|
unssad |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → 𝑦 ⊆ 𝐴 ) |
26 |
23 25
|
jca |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) ) |
27 |
|
id |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) |
28 |
|
vsnid |
⊢ 𝑧 ∈ { 𝑧 } |
29 |
|
elun2 |
⊢ ( 𝑧 ∈ { 𝑧 } → 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
30 |
28 29
|
mp1i |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → 𝑧 ∈ ( 𝑦 ∪ { 𝑧 } ) ) |
31 |
27 30
|
sseldd |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 → 𝑧 ∈ 𝐴 ) |
32 |
31
|
ad2antll |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → 𝑧 ∈ 𝐴 ) |
33 |
|
simplr |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ¬ 𝑧 ∈ 𝑦 ) |
34 |
32 33
|
eldifd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → 𝑧 ∈ ( 𝐴 ∖ 𝑦 ) ) |
35 |
23 25 34 6
|
syl12anc |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( 𝜃 → 𝜏 ) ) |
36 |
26 35
|
embantd |
⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ∧ ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) → ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) → 𝜃 ) → 𝜏 ) ) |
37 |
36
|
ex |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) → 𝜃 ) → 𝜏 ) ) ) |
38 |
37
|
com23 |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( ( 𝜑 ∧ 𝑦 ⊆ 𝐴 ) → 𝜃 ) → ( ( 𝜑 ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → 𝜏 ) ) ) |
39 |
12 15 18 21 22 38
|
findcard2s |
⊢ ( 𝐴 ∈ Fin → ( ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) → 𝜂 ) ) |
40 |
9 39
|
mpcom |
⊢ ( ( 𝜑 ∧ 𝐴 ⊆ 𝐴 ) → 𝜂 ) |
41 |
8 40
|
mpan2 |
⊢ ( 𝜑 → 𝜂 ) |