| Step |
Hyp |
Ref |
Expression |
| 1 |
|
findcard3OLD.1 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) |
| 2 |
|
findcard3OLD.2 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) |
| 3 |
|
findcard3OLD.3 |
⊢ ( 𝑦 ∈ Fin → ( ∀ 𝑥 ( 𝑥 ⊊ 𝑦 → 𝜑 ) → 𝜒 ) ) |
| 4 |
|
isfi |
⊢ ( 𝐴 ∈ Fin ↔ ∃ 𝑤 ∈ ω 𝐴 ≈ 𝑤 ) |
| 5 |
|
nnon |
⊢ ( 𝑤 ∈ ω → 𝑤 ∈ On ) |
| 6 |
|
eleq1w |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∈ ω ↔ 𝑧 ∈ ω ) ) |
| 7 |
|
breq2 |
⊢ ( 𝑤 = 𝑧 → ( 𝑥 ≈ 𝑤 ↔ 𝑥 ≈ 𝑧 ) ) |
| 8 |
7
|
imbi1d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ) |
| 9 |
8
|
albidv |
⊢ ( 𝑤 = 𝑧 → ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ) |
| 10 |
6 9
|
imbi12d |
⊢ ( 𝑤 = 𝑧 → ( ( 𝑤 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ) ↔ ( 𝑧 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ) ) |
| 11 |
|
rspe |
⊢ ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) → ∃ 𝑤 ∈ ω 𝑦 ≈ 𝑤 ) |
| 12 |
|
isfi |
⊢ ( 𝑦 ∈ Fin ↔ ∃ 𝑤 ∈ ω 𝑦 ≈ 𝑤 ) |
| 13 |
11 12
|
sylibr |
⊢ ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) → 𝑦 ∈ Fin ) |
| 14 |
|
19.21v |
⊢ ( ∀ 𝑥 ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ↔ ( 𝑧 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ) |
| 15 |
14
|
ralbii |
⊢ ( ∀ 𝑧 ∈ 𝑤 ∀ 𝑥 ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ↔ ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ) |
| 16 |
|
ralcom4 |
⊢ ( ∀ 𝑧 ∈ 𝑤 ∀ 𝑥 ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ↔ ∀ 𝑥 ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ) |
| 17 |
15 16
|
bitr3i |
⊢ ( ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ↔ ∀ 𝑥 ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ) |
| 18 |
|
pssss |
⊢ ( 𝑥 ⊊ 𝑦 → 𝑥 ⊆ 𝑦 ) |
| 19 |
|
ssfi |
⊢ ( ( 𝑦 ∈ Fin ∧ 𝑥 ⊆ 𝑦 ) → 𝑥 ∈ Fin ) |
| 20 |
|
isfi |
⊢ ( 𝑥 ∈ Fin ↔ ∃ 𝑧 ∈ ω 𝑥 ≈ 𝑧 ) |
| 21 |
19 20
|
sylib |
⊢ ( ( 𝑦 ∈ Fin ∧ 𝑥 ⊆ 𝑦 ) → ∃ 𝑧 ∈ ω 𝑥 ≈ 𝑧 ) |
| 22 |
13 18 21
|
syl2an |
⊢ ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) → ∃ 𝑧 ∈ ω 𝑥 ≈ 𝑧 ) |
| 23 |
|
ensym |
⊢ ( 𝑥 ≈ 𝑧 → 𝑧 ≈ 𝑥 ) |
| 24 |
23
|
ad2antll |
⊢ ( ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) ∧ ( 𝑧 ∈ ω ∧ 𝑥 ≈ 𝑧 ) ) → 𝑧 ≈ 𝑥 ) |
| 25 |
|
php3 |
⊢ ( ( 𝑦 ∈ Fin ∧ 𝑥 ⊊ 𝑦 ) → 𝑥 ≺ 𝑦 ) |
| 26 |
13 25
|
sylan |
⊢ ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) → 𝑥 ≺ 𝑦 ) |
| 27 |
|
simpllr |
⊢ ( ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) ∧ ( 𝑧 ∈ ω ∧ 𝑥 ≈ 𝑧 ) ) → 𝑦 ≈ 𝑤 ) |
| 28 |
|
sdomentr |
⊢ ( ( 𝑥 ≺ 𝑦 ∧ 𝑦 ≈ 𝑤 ) → 𝑥 ≺ 𝑤 ) |
| 29 |
26 27 28
|
syl2an2r |
⊢ ( ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) ∧ ( 𝑧 ∈ ω ∧ 𝑥 ≈ 𝑧 ) ) → 𝑥 ≺ 𝑤 ) |
| 30 |
|
ensdomtr |
⊢ ( ( 𝑧 ≈ 𝑥 ∧ 𝑥 ≺ 𝑤 ) → 𝑧 ≺ 𝑤 ) |
| 31 |
24 29 30
|
syl2anc |
⊢ ( ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) ∧ ( 𝑧 ∈ ω ∧ 𝑥 ≈ 𝑧 ) ) → 𝑧 ≺ 𝑤 ) |
| 32 |
|
nnon |
⊢ ( 𝑧 ∈ ω → 𝑧 ∈ On ) |
| 33 |
32
|
ad2antrl |
⊢ ( ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) ∧ ( 𝑧 ∈ ω ∧ 𝑥 ≈ 𝑧 ) ) → 𝑧 ∈ On ) |
| 34 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) ∧ ( 𝑧 ∈ ω ∧ 𝑥 ≈ 𝑧 ) ) → 𝑤 ∈ On ) |
| 35 |
|
sdomel |
⊢ ( ( 𝑧 ∈ On ∧ 𝑤 ∈ On ) → ( 𝑧 ≺ 𝑤 → 𝑧 ∈ 𝑤 ) ) |
| 36 |
33 34 35
|
syl2anc |
⊢ ( ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) ∧ ( 𝑧 ∈ ω ∧ 𝑥 ≈ 𝑧 ) ) → ( 𝑧 ≺ 𝑤 → 𝑧 ∈ 𝑤 ) ) |
| 37 |
31 36
|
mpd |
⊢ ( ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) ∧ ( 𝑧 ∈ ω ∧ 𝑥 ≈ 𝑧 ) ) → 𝑧 ∈ 𝑤 ) |
| 38 |
37
|
ex |
⊢ ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) → ( ( 𝑧 ∈ ω ∧ 𝑥 ≈ 𝑧 ) → 𝑧 ∈ 𝑤 ) ) |
| 39 |
|
simpr |
⊢ ( ( 𝑧 ∈ ω ∧ 𝑥 ≈ 𝑧 ) → 𝑥 ≈ 𝑧 ) |
| 40 |
38 39
|
jca2 |
⊢ ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) → ( ( 𝑧 ∈ ω ∧ 𝑥 ≈ 𝑧 ) → ( 𝑧 ∈ 𝑤 ∧ 𝑥 ≈ 𝑧 ) ) ) |
| 41 |
40
|
reximdv2 |
⊢ ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) → ( ∃ 𝑧 ∈ ω 𝑥 ≈ 𝑧 → ∃ 𝑧 ∈ 𝑤 𝑥 ≈ 𝑧 ) ) |
| 42 |
22 41
|
mpd |
⊢ ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) → ∃ 𝑧 ∈ 𝑤 𝑥 ≈ 𝑧 ) |
| 43 |
|
r19.29 |
⊢ ( ( ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ∧ ∃ 𝑧 ∈ 𝑤 𝑥 ≈ 𝑧 ) → ∃ 𝑧 ∈ 𝑤 ( ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ∧ 𝑥 ≈ 𝑧 ) ) |
| 44 |
43
|
expcom |
⊢ ( ∃ 𝑧 ∈ 𝑤 𝑥 ≈ 𝑧 → ( ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) → ∃ 𝑧 ∈ 𝑤 ( ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ∧ 𝑥 ≈ 𝑧 ) ) ) |
| 45 |
42 44
|
syl |
⊢ ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) → ( ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) → ∃ 𝑧 ∈ 𝑤 ( ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ∧ 𝑥 ≈ 𝑧 ) ) ) |
| 46 |
|
ordom |
⊢ Ord ω |
| 47 |
|
ordelss |
⊢ ( ( Ord ω ∧ 𝑤 ∈ ω ) → 𝑤 ⊆ ω ) |
| 48 |
46 47
|
mpan |
⊢ ( 𝑤 ∈ ω → 𝑤 ⊆ ω ) |
| 49 |
48
|
ad2antrr |
⊢ ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) → 𝑤 ⊆ ω ) |
| 50 |
49
|
sseld |
⊢ ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) → ( 𝑧 ∈ 𝑤 → 𝑧 ∈ ω ) ) |
| 51 |
|
pm2.27 |
⊢ ( 𝑧 ∈ ω → ( ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ) |
| 52 |
51
|
impd |
⊢ ( 𝑧 ∈ ω → ( ( ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ∧ 𝑥 ≈ 𝑧 ) → 𝜑 ) ) |
| 53 |
50 52
|
syl6 |
⊢ ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) → ( 𝑧 ∈ 𝑤 → ( ( ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ∧ 𝑥 ≈ 𝑧 ) → 𝜑 ) ) ) |
| 54 |
53
|
rexlimdv |
⊢ ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) → ( ∃ 𝑧 ∈ 𝑤 ( ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ∧ 𝑥 ≈ 𝑧 ) → 𝜑 ) ) |
| 55 |
45 54
|
syld |
⊢ ( ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) ∧ 𝑥 ⊊ 𝑦 ) → ( ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) → 𝜑 ) ) |
| 56 |
55
|
ex |
⊢ ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) → ( 𝑥 ⊊ 𝑦 → ( ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) → 𝜑 ) ) ) |
| 57 |
56
|
com23 |
⊢ ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) → ( ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) → ( 𝑥 ⊊ 𝑦 → 𝜑 ) ) ) |
| 58 |
57
|
alimdv |
⊢ ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) → ( ∀ 𝑥 ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ( 𝑥 ≈ 𝑧 → 𝜑 ) ) → ∀ 𝑥 ( 𝑥 ⊊ 𝑦 → 𝜑 ) ) ) |
| 59 |
17 58
|
biimtrid |
⊢ ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) → ( ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑧 → 𝜑 ) ) → ∀ 𝑥 ( 𝑥 ⊊ 𝑦 → 𝜑 ) ) ) |
| 60 |
13 59 3
|
sylsyld |
⊢ ( ( 𝑤 ∈ ω ∧ 𝑦 ≈ 𝑤 ) → ( ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑧 → 𝜑 ) ) → 𝜒 ) ) |
| 61 |
60
|
impancom |
⊢ ( ( 𝑤 ∈ ω ∧ ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ) → ( 𝑦 ≈ 𝑤 → 𝜒 ) ) |
| 62 |
61
|
alrimiv |
⊢ ( ( 𝑤 ∈ ω ∧ ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑧 → 𝜑 ) ) ) → ∀ 𝑦 ( 𝑦 ≈ 𝑤 → 𝜒 ) ) |
| 63 |
62
|
expcom |
⊢ ( ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑧 → 𝜑 ) ) → ( 𝑤 ∈ ω → ∀ 𝑦 ( 𝑦 ≈ 𝑤 → 𝜒 ) ) ) |
| 64 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≈ 𝑤 ↔ 𝑦 ≈ 𝑤 ) ) |
| 65 |
64 1
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ( 𝑦 ≈ 𝑤 → 𝜒 ) ) ) |
| 66 |
65
|
cbvalvw |
⊢ ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ≈ 𝑤 → 𝜒 ) ) |
| 67 |
63 66
|
imbitrrdi |
⊢ ( ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑧 → 𝜑 ) ) → ( 𝑤 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ) ) |
| 68 |
67
|
a1i |
⊢ ( 𝑤 ∈ On → ( ∀ 𝑧 ∈ 𝑤 ( 𝑧 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑧 → 𝜑 ) ) → ( 𝑤 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ) ) ) |
| 69 |
10 68
|
tfis2 |
⊢ ( 𝑤 ∈ On → ( 𝑤 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ) ) |
| 70 |
5 69
|
mpcom |
⊢ ( 𝑤 ∈ ω → ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ) |
| 71 |
70
|
rgen |
⊢ ∀ 𝑤 ∈ ω ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) |
| 72 |
|
r19.29 |
⊢ ( ( ∀ 𝑤 ∈ ω ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ∧ ∃ 𝑤 ∈ ω 𝐴 ≈ 𝑤 ) → ∃ 𝑤 ∈ ω ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ∧ 𝐴 ≈ 𝑤 ) ) |
| 73 |
71 72
|
mpan |
⊢ ( ∃ 𝑤 ∈ ω 𝐴 ≈ 𝑤 → ∃ 𝑤 ∈ ω ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ∧ 𝐴 ≈ 𝑤 ) ) |
| 74 |
4 73
|
sylbi |
⊢ ( 𝐴 ∈ Fin → ∃ 𝑤 ∈ ω ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ∧ 𝐴 ≈ 𝑤 ) ) |
| 75 |
|
breq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ≈ 𝑤 ↔ 𝐴 ≈ 𝑤 ) ) |
| 76 |
75 2
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ≈ 𝑤 → 𝜑 ) ↔ ( 𝐴 ≈ 𝑤 → 𝜏 ) ) ) |
| 77 |
76
|
spcgv |
⊢ ( 𝐴 ∈ Fin → ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) → ( 𝐴 ≈ 𝑤 → 𝜏 ) ) ) |
| 78 |
77
|
impd |
⊢ ( 𝐴 ∈ Fin → ( ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ∧ 𝐴 ≈ 𝑤 ) → 𝜏 ) ) |
| 79 |
78
|
rexlimdvw |
⊢ ( 𝐴 ∈ Fin → ( ∃ 𝑤 ∈ ω ( ∀ 𝑥 ( 𝑥 ≈ 𝑤 → 𝜑 ) ∧ 𝐴 ≈ 𝑤 ) → 𝜏 ) ) |
| 80 |
74 79
|
mpd |
⊢ ( 𝐴 ∈ Fin → 𝜏 ) |