Step |
Hyp |
Ref |
Expression |
1 |
|
finds.1 |
⊢ ( 𝑥 = ∅ → ( 𝜑 ↔ 𝜓 ) ) |
2 |
|
finds.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) |
3 |
|
finds.3 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝜑 ↔ 𝜃 ) ) |
4 |
|
finds.4 |
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜏 ) ) |
5 |
|
finds.5 |
⊢ 𝜓 |
6 |
|
finds.6 |
⊢ ( 𝑦 ∈ ω → ( 𝜒 → 𝜃 ) ) |
7 |
|
0ex |
⊢ ∅ ∈ V |
8 |
7 1
|
elab |
⊢ ( ∅ ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) |
9 |
5 8
|
mpbir |
⊢ ∅ ∈ { 𝑥 ∣ 𝜑 } |
10 |
|
vex |
⊢ 𝑦 ∈ V |
11 |
10 2
|
elab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜒 ) |
12 |
10
|
sucex |
⊢ suc 𝑦 ∈ V |
13 |
12 3
|
elab |
⊢ ( suc 𝑦 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜃 ) |
14 |
6 11 13
|
3imtr4g |
⊢ ( 𝑦 ∈ ω → ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → suc 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ) |
15 |
14
|
rgen |
⊢ ∀ 𝑦 ∈ ω ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → suc 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) |
16 |
|
peano5 |
⊢ ( ( ∅ ∈ { 𝑥 ∣ 𝜑 } ∧ ∀ 𝑦 ∈ ω ( 𝑦 ∈ { 𝑥 ∣ 𝜑 } → suc 𝑦 ∈ { 𝑥 ∣ 𝜑 } ) ) → ω ⊆ { 𝑥 ∣ 𝜑 } ) |
17 |
9 15 16
|
mp2an |
⊢ ω ⊆ { 𝑥 ∣ 𝜑 } |
18 |
17
|
sseli |
⊢ ( 𝐴 ∈ ω → 𝐴 ∈ { 𝑥 ∣ 𝜑 } ) |
19 |
4
|
elabg |
⊢ ( 𝐴 ∈ ω → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜏 ) ) |
20 |
18 19
|
mpbid |
⊢ ( 𝐴 ∈ ω → 𝜏 ) |