| Step |
Hyp |
Ref |
Expression |
| 1 |
|
finds2.1 |
⊢ ( 𝑥 = ∅ → ( 𝜑 ↔ 𝜓 ) ) |
| 2 |
|
finds2.2 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜒 ) ) |
| 3 |
|
finds2.3 |
⊢ ( 𝑥 = suc 𝑦 → ( 𝜑 ↔ 𝜃 ) ) |
| 4 |
|
finds2.4 |
⊢ ( 𝜏 → 𝜓 ) |
| 5 |
|
finds2.5 |
⊢ ( 𝑦 ∈ ω → ( 𝜏 → ( 𝜒 → 𝜃 ) ) ) |
| 6 |
|
0ex |
⊢ ∅ ∈ V |
| 7 |
1
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( 𝜏 → 𝜑 ) ↔ ( 𝜏 → 𝜓 ) ) ) |
| 8 |
6 7
|
elab |
⊢ ( ∅ ∈ { 𝑥 ∣ ( 𝜏 → 𝜑 ) } ↔ ( 𝜏 → 𝜓 ) ) |
| 9 |
4 8
|
mpbir |
⊢ ∅ ∈ { 𝑥 ∣ ( 𝜏 → 𝜑 ) } |
| 10 |
5
|
a2d |
⊢ ( 𝑦 ∈ ω → ( ( 𝜏 → 𝜒 ) → ( 𝜏 → 𝜃 ) ) ) |
| 11 |
|
vex |
⊢ 𝑦 ∈ V |
| 12 |
2
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜏 → 𝜑 ) ↔ ( 𝜏 → 𝜒 ) ) ) |
| 13 |
11 12
|
elab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ ( 𝜏 → 𝜑 ) } ↔ ( 𝜏 → 𝜒 ) ) |
| 14 |
11
|
sucex |
⊢ suc 𝑦 ∈ V |
| 15 |
3
|
imbi2d |
⊢ ( 𝑥 = suc 𝑦 → ( ( 𝜏 → 𝜑 ) ↔ ( 𝜏 → 𝜃 ) ) ) |
| 16 |
14 15
|
elab |
⊢ ( suc 𝑦 ∈ { 𝑥 ∣ ( 𝜏 → 𝜑 ) } ↔ ( 𝜏 → 𝜃 ) ) |
| 17 |
10 13 16
|
3imtr4g |
⊢ ( 𝑦 ∈ ω → ( 𝑦 ∈ { 𝑥 ∣ ( 𝜏 → 𝜑 ) } → suc 𝑦 ∈ { 𝑥 ∣ ( 𝜏 → 𝜑 ) } ) ) |
| 18 |
17
|
rgen |
⊢ ∀ 𝑦 ∈ ω ( 𝑦 ∈ { 𝑥 ∣ ( 𝜏 → 𝜑 ) } → suc 𝑦 ∈ { 𝑥 ∣ ( 𝜏 → 𝜑 ) } ) |
| 19 |
|
peano5 |
⊢ ( ( ∅ ∈ { 𝑥 ∣ ( 𝜏 → 𝜑 ) } ∧ ∀ 𝑦 ∈ ω ( 𝑦 ∈ { 𝑥 ∣ ( 𝜏 → 𝜑 ) } → suc 𝑦 ∈ { 𝑥 ∣ ( 𝜏 → 𝜑 ) } ) ) → ω ⊆ { 𝑥 ∣ ( 𝜏 → 𝜑 ) } ) |
| 20 |
9 18 19
|
mp2an |
⊢ ω ⊆ { 𝑥 ∣ ( 𝜏 → 𝜑 ) } |
| 21 |
20
|
sseli |
⊢ ( 𝑥 ∈ ω → 𝑥 ∈ { 𝑥 ∣ ( 𝜏 → 𝜑 ) } ) |
| 22 |
|
abid |
⊢ ( 𝑥 ∈ { 𝑥 ∣ ( 𝜏 → 𝜑 ) } ↔ ( 𝜏 → 𝜑 ) ) |
| 23 |
21 22
|
sylib |
⊢ ( 𝑥 ∈ ω → ( 𝜏 → 𝜑 ) ) |