Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Finite sets
fineqv
Metamath Proof Explorer
Description: If the Axiom of Infinity is denied, then all sets are finite (which
implies the Axiom of Choice). (Contributed by Mario Carneiro , 20-Jan-2013) (Revised by Mario Carneiro , 3-Jan-2015)
Ref
Expression
Assertion
fineqv
⊢ ( ¬ ω ∈ V ↔ Fin = V )
Proof
Step
Hyp
Ref
Expression
1
ssv
⊢ Fin ⊆ V
2
1
a1i
⊢ ( ¬ ω ∈ V → Fin ⊆ V )
3
vex
⊢ 𝑎 ∈ V
4
fineqvlem
⊢ ( ( 𝑎 ∈ V ∧ ¬ 𝑎 ∈ Fin ) → ω ≼ 𝒫 𝒫 𝑎 )
5
3 4
mpan
⊢ ( ¬ 𝑎 ∈ Fin → ω ≼ 𝒫 𝒫 𝑎 )
6
reldom
⊢ Rel ≼
7
6
brrelex1i
⊢ ( ω ≼ 𝒫 𝒫 𝑎 → ω ∈ V )
8
5 7
syl
⊢ ( ¬ 𝑎 ∈ Fin → ω ∈ V )
9
8
con1i
⊢ ( ¬ ω ∈ V → 𝑎 ∈ Fin )
10
9
a1d
⊢ ( ¬ ω ∈ V → ( 𝑎 ∈ V → 𝑎 ∈ Fin ) )
11
10
ssrdv
⊢ ( ¬ ω ∈ V → V ⊆ Fin )
12
2 11
eqssd
⊢ ( ¬ ω ∈ V → Fin = V )
13
ominf
⊢ ¬ ω ∈ Fin
14
eleq2
⊢ ( Fin = V → ( ω ∈ Fin ↔ ω ∈ V ) )
15
13 14
mtbii
⊢ ( Fin = V → ¬ ω ∈ V )
16
12 15
impbii
⊢ ( ¬ ω ∈ V ↔ Fin = V )