Metamath Proof Explorer


Theorem fineqv

Description: If the Axiom of Infinity is denied, then all sets are finite (which implies the Axiom of Choice). (Contributed by Mario Carneiro, 20-Jan-2013) (Revised by Mario Carneiro, 3-Jan-2015)

Ref Expression
Assertion fineqv ( ¬ ω ∈ V ↔ Fin = V )

Proof

Step Hyp Ref Expression
1 ssv Fin ⊆ V
2 1 a1i ( ¬ ω ∈ V → Fin ⊆ V )
3 vex 𝑎 ∈ V
4 fineqvlem ( ( 𝑎 ∈ V ∧ ¬ 𝑎 ∈ Fin ) → ω ≼ 𝒫 𝒫 𝑎 )
5 3 4 mpan ( ¬ 𝑎 ∈ Fin → ω ≼ 𝒫 𝒫 𝑎 )
6 reldom Rel ≼
7 6 brrelex1i ( ω ≼ 𝒫 𝒫 𝑎 → ω ∈ V )
8 5 7 syl ( ¬ 𝑎 ∈ Fin → ω ∈ V )
9 8 con1i ( ¬ ω ∈ V → 𝑎 ∈ Fin )
10 9 a1d ( ¬ ω ∈ V → ( 𝑎 ∈ V → 𝑎 ∈ Fin ) )
11 10 ssrdv ( ¬ ω ∈ V → V ⊆ Fin )
12 2 11 eqssd ( ¬ ω ∈ V → Fin = V )
13 ominf ¬ ω ∈ Fin
14 eleq2 ( Fin = V → ( ω ∈ Fin ↔ ω ∈ V ) )
15 13 14 mtbii ( Fin = V → ¬ ω ∈ V )
16 12 15 impbii ( ¬ ω ∈ V ↔ Fin = V )