Step |
Hyp |
Ref |
Expression |
1 |
|
pwexg |
⊢ ( 𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ V ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → 𝒫 𝐴 ∈ V ) |
3 |
2
|
pwexd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → 𝒫 𝒫 𝐴 ∈ V ) |
4 |
|
ssrab2 |
⊢ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ⊆ 𝒫 𝐴 |
5 |
|
elpw2g |
⊢ ( 𝒫 𝐴 ∈ V → ( { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ∈ 𝒫 𝒫 𝐴 ↔ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ⊆ 𝒫 𝐴 ) ) |
6 |
2 5
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ∈ 𝒫 𝒫 𝐴 ↔ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ⊆ 𝒫 𝐴 ) ) |
7 |
4 6
|
mpbiri |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ∈ 𝒫 𝒫 𝐴 ) |
8 |
7
|
a1d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( 𝑏 ∈ ω → { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ∈ 𝒫 𝒫 𝐴 ) ) |
9 |
|
isinf |
⊢ ( ¬ 𝐴 ∈ Fin → ∀ 𝑏 ∈ ω ∃ 𝑒 ( 𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏 ) ) |
10 |
9
|
r19.21bi |
⊢ ( ( ¬ 𝐴 ∈ Fin ∧ 𝑏 ∈ ω ) → ∃ 𝑒 ( 𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏 ) ) |
11 |
10
|
ad2ant2lr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) → ∃ 𝑒 ( 𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏 ) ) |
12 |
|
velpw |
⊢ ( 𝑒 ∈ 𝒫 𝐴 ↔ 𝑒 ⊆ 𝐴 ) |
13 |
12
|
biimpri |
⊢ ( 𝑒 ⊆ 𝐴 → 𝑒 ∈ 𝒫 𝐴 ) |
14 |
13
|
anim1i |
⊢ ( ( 𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏 ) → ( 𝑒 ∈ 𝒫 𝐴 ∧ 𝑒 ≈ 𝑏 ) ) |
15 |
|
breq1 |
⊢ ( 𝑑 = 𝑒 → ( 𝑑 ≈ 𝑏 ↔ 𝑒 ≈ 𝑏 ) ) |
16 |
15
|
elrab |
⊢ ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ↔ ( 𝑒 ∈ 𝒫 𝐴 ∧ 𝑒 ≈ 𝑏 ) ) |
17 |
14 16
|
sylibr |
⊢ ( ( 𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏 ) → 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ) |
18 |
17
|
eximi |
⊢ ( ∃ 𝑒 ( 𝑒 ⊆ 𝐴 ∧ 𝑒 ≈ 𝑏 ) → ∃ 𝑒 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ) |
19 |
11 18
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) → ∃ 𝑒 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ) |
20 |
|
eleq2 |
⊢ ( { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } = { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } → ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ↔ 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } ) ) |
21 |
20
|
biimpcd |
⊢ ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } → ( { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } = { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } → 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } ) ) |
22 |
21
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ) → ( { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } = { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } → 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } ) ) |
23 |
16
|
simprbi |
⊢ ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } → 𝑒 ≈ 𝑏 ) |
24 |
|
breq1 |
⊢ ( 𝑑 = 𝑒 → ( 𝑑 ≈ 𝑐 ↔ 𝑒 ≈ 𝑐 ) ) |
25 |
24
|
elrab |
⊢ ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } ↔ ( 𝑒 ∈ 𝒫 𝐴 ∧ 𝑒 ≈ 𝑐 ) ) |
26 |
25
|
simprbi |
⊢ ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } → 𝑒 ≈ 𝑐 ) |
27 |
|
ensym |
⊢ ( 𝑒 ≈ 𝑏 → 𝑏 ≈ 𝑒 ) |
28 |
|
entr |
⊢ ( ( 𝑏 ≈ 𝑒 ∧ 𝑒 ≈ 𝑐 ) → 𝑏 ≈ 𝑐 ) |
29 |
27 28
|
sylan |
⊢ ( ( 𝑒 ≈ 𝑏 ∧ 𝑒 ≈ 𝑐 ) → 𝑏 ≈ 𝑐 ) |
30 |
23 26 29
|
syl2an |
⊢ ( ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ∧ 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } ) → 𝑏 ≈ 𝑐 ) |
31 |
30
|
ex |
⊢ ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } → ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } → 𝑏 ≈ 𝑐 ) ) |
32 |
31
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ) → ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } → 𝑏 ≈ 𝑐 ) ) |
33 |
|
nneneq |
⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) → ( 𝑏 ≈ 𝑐 ↔ 𝑏 = 𝑐 ) ) |
34 |
33
|
biimpd |
⊢ ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) → ( 𝑏 ≈ 𝑐 → 𝑏 = 𝑐 ) ) |
35 |
34
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ) → ( 𝑏 ≈ 𝑐 → 𝑏 = 𝑐 ) ) |
36 |
22 32 35
|
3syld |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } ) → ( { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } = { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } → 𝑏 = 𝑐 ) ) |
37 |
19 36
|
exlimddv |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) → ( { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } = { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } → 𝑏 = 𝑐 ) ) |
38 |
|
breq2 |
⊢ ( 𝑏 = 𝑐 → ( 𝑑 ≈ 𝑏 ↔ 𝑑 ≈ 𝑐 ) ) |
39 |
38
|
rabbidv |
⊢ ( 𝑏 = 𝑐 → { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } = { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } ) |
40 |
37 39
|
impbid1 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) → ( { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } = { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } ↔ 𝑏 = 𝑐 ) ) |
41 |
40
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) → ( { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑏 } = { 𝑑 ∈ 𝒫 𝐴 ∣ 𝑑 ≈ 𝑐 } ↔ 𝑏 = 𝑐 ) ) ) |
42 |
8 41
|
dom2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( 𝒫 𝒫 𝐴 ∈ V → ω ≼ 𝒫 𝒫 𝐴 ) ) |
43 |
3 42
|
mpd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ω ≼ 𝒫 𝒫 𝐴 ) |