Metamath Proof Explorer


Theorem fineqvlem

Description: Lemma for fineqv . (Contributed by Mario Carneiro, 20-Jan-2013) (Proof shortened by Stefan O'Rear, 3-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion fineqvlem ( ( 𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ω ≼ 𝒫 𝒫 𝐴 )

Proof

Step Hyp Ref Expression
1 pwexg ( 𝐴𝑉 → 𝒫 𝐴 ∈ V )
2 1 adantr ( ( 𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin ) → 𝒫 𝐴 ∈ V )
3 2 pwexd ( ( 𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin ) → 𝒫 𝒫 𝐴 ∈ V )
4 ssrab2 { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } ⊆ 𝒫 𝐴
5 elpw2g ( 𝒫 𝐴 ∈ V → ( { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } ∈ 𝒫 𝒫 𝐴 ↔ { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } ⊆ 𝒫 𝐴 ) )
6 2 5 syl ( ( 𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } ∈ 𝒫 𝒫 𝐴 ↔ { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } ⊆ 𝒫 𝐴 ) )
7 4 6 mpbiri ( ( 𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin ) → { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } ∈ 𝒫 𝒫 𝐴 )
8 7 a1d ( ( 𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( 𝑏 ∈ ω → { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } ∈ 𝒫 𝒫 𝐴 ) )
9 isinf ( ¬ 𝐴 ∈ Fin → ∀ 𝑏 ∈ ω ∃ 𝑒 ( 𝑒𝐴𝑒𝑏 ) )
10 9 r19.21bi ( ( ¬ 𝐴 ∈ Fin ∧ 𝑏 ∈ ω ) → ∃ 𝑒 ( 𝑒𝐴𝑒𝑏 ) )
11 10 ad2ant2lr ( ( ( 𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) → ∃ 𝑒 ( 𝑒𝐴𝑒𝑏 ) )
12 velpw ( 𝑒 ∈ 𝒫 𝐴𝑒𝐴 )
13 12 biimpri ( 𝑒𝐴𝑒 ∈ 𝒫 𝐴 )
14 13 anim1i ( ( 𝑒𝐴𝑒𝑏 ) → ( 𝑒 ∈ 𝒫 𝐴𝑒𝑏 ) )
15 breq1 ( 𝑑 = 𝑒 → ( 𝑑𝑏𝑒𝑏 ) )
16 15 elrab ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } ↔ ( 𝑒 ∈ 𝒫 𝐴𝑒𝑏 ) )
17 14 16 sylibr ( ( 𝑒𝐴𝑒𝑏 ) → 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } )
18 17 eximi ( ∃ 𝑒 ( 𝑒𝐴𝑒𝑏 ) → ∃ 𝑒 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } )
19 11 18 syl ( ( ( 𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) → ∃ 𝑒 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } )
20 eleq2 ( { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } = { 𝑑 ∈ 𝒫 𝐴𝑑𝑐 } → ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } ↔ 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴𝑑𝑐 } ) )
21 20 biimpcd ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } → ( { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } = { 𝑑 ∈ 𝒫 𝐴𝑑𝑐 } → 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴𝑑𝑐 } ) )
22 21 adantl ( ( ( ( 𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } ) → ( { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } = { 𝑑 ∈ 𝒫 𝐴𝑑𝑐 } → 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴𝑑𝑐 } ) )
23 16 simprbi ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } → 𝑒𝑏 )
24 breq1 ( 𝑑 = 𝑒 → ( 𝑑𝑐𝑒𝑐 ) )
25 24 elrab ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴𝑑𝑐 } ↔ ( 𝑒 ∈ 𝒫 𝐴𝑒𝑐 ) )
26 25 simprbi ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴𝑑𝑐 } → 𝑒𝑐 )
27 ensym ( 𝑒𝑏𝑏𝑒 )
28 entr ( ( 𝑏𝑒𝑒𝑐 ) → 𝑏𝑐 )
29 27 28 sylan ( ( 𝑒𝑏𝑒𝑐 ) → 𝑏𝑐 )
30 23 26 29 syl2an ( ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } ∧ 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴𝑑𝑐 } ) → 𝑏𝑐 )
31 30 ex ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } → ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴𝑑𝑐 } → 𝑏𝑐 ) )
32 31 adantl ( ( ( ( 𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } ) → ( 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴𝑑𝑐 } → 𝑏𝑐 ) )
33 nneneq ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) → ( 𝑏𝑐𝑏 = 𝑐 ) )
34 33 biimpd ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) → ( 𝑏𝑐𝑏 = 𝑐 ) )
35 34 ad2antlr ( ( ( ( 𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } ) → ( 𝑏𝑐𝑏 = 𝑐 ) )
36 22 32 35 3syld ( ( ( ( 𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) ∧ 𝑒 ∈ { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } ) → ( { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } = { 𝑑 ∈ 𝒫 𝐴𝑑𝑐 } → 𝑏 = 𝑐 ) )
37 19 36 exlimddv ( ( ( 𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) → ( { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } = { 𝑑 ∈ 𝒫 𝐴𝑑𝑐 } → 𝑏 = 𝑐 ) )
38 breq2 ( 𝑏 = 𝑐 → ( 𝑑𝑏𝑑𝑐 ) )
39 38 rabbidv ( 𝑏 = 𝑐 → { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } = { 𝑑 ∈ 𝒫 𝐴𝑑𝑐 } )
40 37 39 impbid1 ( ( ( 𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin ) ∧ ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) ) → ( { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } = { 𝑑 ∈ 𝒫 𝐴𝑑𝑐 } ↔ 𝑏 = 𝑐 ) )
41 40 ex ( ( 𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( ( 𝑏 ∈ ω ∧ 𝑐 ∈ ω ) → ( { 𝑑 ∈ 𝒫 𝐴𝑑𝑏 } = { 𝑑 ∈ 𝒫 𝐴𝑑𝑐 } ↔ 𝑏 = 𝑐 ) ) )
42 8 41 dom2d ( ( 𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ( 𝒫 𝒫 𝐴 ∈ V → ω ≼ 𝒫 𝒫 𝐴 ) )
43 3 42 mpd ( ( 𝐴𝑉 ∧ ¬ 𝐴 ∈ Fin ) → ω ≼ 𝒫 𝒫 𝐴 )