Metamath Proof Explorer


Theorem fingch

Description: A finite set is a GCH-set. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion fingch Fin ⊆ GCH

Proof

Step Hyp Ref Expression
1 ssun1 Fin ⊆ ( Fin ∪ { 𝑥 ∣ ∀ 𝑦 ¬ ( 𝑥𝑦𝑦 ≺ 𝒫 𝑥 ) } )
2 df-gch GCH = ( Fin ∪ { 𝑥 ∣ ∀ 𝑦 ¬ ( 𝑥𝑦𝑦 ≺ 𝒫 𝑥 ) } )
3 1 2 sseqtrri Fin ⊆ GCH