Metamath Proof Explorer


Theorem finngch

Description: The exclusion of finite sets from consideration in df-gch is necessary, because otherwise finite sets larger than a singleton would violate the GCH property. (Contributed by Mario Carneiro, 10-Jun-2015)

Ref Expression
Assertion finngch ( ( 𝐴 ∈ Fin ∧ 1o𝐴 ) → ( 𝐴 ≺ ( 𝐴 ⊔ 1o ) ∧ ( 𝐴 ⊔ 1o ) ≺ 𝒫 𝐴 ) )

Proof

Step Hyp Ref Expression
1 fin12 ( 𝐴 ∈ Fin → 𝐴 ∈ FinII )
2 fin23 ( 𝐴 ∈ FinII𝐴 ∈ FinIII )
3 fin34 ( 𝐴 ∈ FinIII𝐴 ∈ FinIV )
4 1 2 3 3syl ( 𝐴 ∈ Fin → 𝐴 ∈ FinIV )
5 isfin4p1 ( 𝐴 ∈ FinIV𝐴 ≺ ( 𝐴 ⊔ 1o ) )
6 4 5 sylib ( 𝐴 ∈ Fin → 𝐴 ≺ ( 𝐴 ⊔ 1o ) )
7 canthp1 ( 1o𝐴 → ( 𝐴 ⊔ 1o ) ≺ 𝒫 𝐴 )
8 6 7 anim12i ( ( 𝐴 ∈ Fin ∧ 1o𝐴 ) → ( 𝐴 ≺ ( 𝐴 ⊔ 1o ) ∧ ( 𝐴 ⊔ 1o ) ≺ 𝒫 𝐴 ) )