Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ OrdIso ( 𝑅 , 𝐴 ) = OrdIso ( 𝑅 , 𝐴 ) |
2 |
1
|
oiexg |
⊢ ( 𝐴 ∈ Fin → OrdIso ( 𝑅 , 𝐴 ) ∈ V ) |
3 |
2
|
adantl |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → OrdIso ( 𝑅 , 𝐴 ) ∈ V ) |
4 |
|
simpr |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → 𝐴 ∈ Fin ) |
5 |
|
wofi |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → 𝑅 We 𝐴 ) |
6 |
1
|
oiiso |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑅 We 𝐴 ) → OrdIso ( 𝑅 , 𝐴 ) Isom E , 𝑅 ( dom OrdIso ( 𝑅 , 𝐴 ) , 𝐴 ) ) |
7 |
4 5 6
|
syl2anc |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → OrdIso ( 𝑅 , 𝐴 ) Isom E , 𝑅 ( dom OrdIso ( 𝑅 , 𝐴 ) , 𝐴 ) ) |
8 |
1
|
oien |
⊢ ( ( 𝐴 ∈ Fin ∧ 𝑅 We 𝐴 ) → dom OrdIso ( 𝑅 , 𝐴 ) ≈ 𝐴 ) |
9 |
4 5 8
|
syl2anc |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → dom OrdIso ( 𝑅 , 𝐴 ) ≈ 𝐴 ) |
10 |
|
ficardid |
⊢ ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ≈ 𝐴 ) |
11 |
10
|
adantl |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( card ‘ 𝐴 ) ≈ 𝐴 ) |
12 |
11
|
ensymd |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → 𝐴 ≈ ( card ‘ 𝐴 ) ) |
13 |
|
entr |
⊢ ( ( dom OrdIso ( 𝑅 , 𝐴 ) ≈ 𝐴 ∧ 𝐴 ≈ ( card ‘ 𝐴 ) ) → dom OrdIso ( 𝑅 , 𝐴 ) ≈ ( card ‘ 𝐴 ) ) |
14 |
9 12 13
|
syl2anc |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → dom OrdIso ( 𝑅 , 𝐴 ) ≈ ( card ‘ 𝐴 ) ) |
15 |
1
|
oion |
⊢ ( 𝐴 ∈ Fin → dom OrdIso ( 𝑅 , 𝐴 ) ∈ On ) |
16 |
15
|
adantl |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → dom OrdIso ( 𝑅 , 𝐴 ) ∈ On ) |
17 |
|
ficardom |
⊢ ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ∈ ω ) |
18 |
17
|
adantl |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( card ‘ 𝐴 ) ∈ ω ) |
19 |
|
onomeneq |
⊢ ( ( dom OrdIso ( 𝑅 , 𝐴 ) ∈ On ∧ ( card ‘ 𝐴 ) ∈ ω ) → ( dom OrdIso ( 𝑅 , 𝐴 ) ≈ ( card ‘ 𝐴 ) ↔ dom OrdIso ( 𝑅 , 𝐴 ) = ( card ‘ 𝐴 ) ) ) |
20 |
16 18 19
|
syl2anc |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( dom OrdIso ( 𝑅 , 𝐴 ) ≈ ( card ‘ 𝐴 ) ↔ dom OrdIso ( 𝑅 , 𝐴 ) = ( card ‘ 𝐴 ) ) ) |
21 |
14 20
|
mpbid |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → dom OrdIso ( 𝑅 , 𝐴 ) = ( card ‘ 𝐴 ) ) |
22 |
|
isoeq4 |
⊢ ( dom OrdIso ( 𝑅 , 𝐴 ) = ( card ‘ 𝐴 ) → ( OrdIso ( 𝑅 , 𝐴 ) Isom E , 𝑅 ( dom OrdIso ( 𝑅 , 𝐴 ) , 𝐴 ) ↔ OrdIso ( 𝑅 , 𝐴 ) Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ) ) |
23 |
21 22
|
syl |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ( OrdIso ( 𝑅 , 𝐴 ) Isom E , 𝑅 ( dom OrdIso ( 𝑅 , 𝐴 ) , 𝐴 ) ↔ OrdIso ( 𝑅 , 𝐴 ) Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ) ) |
24 |
7 23
|
mpbid |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → OrdIso ( 𝑅 , 𝐴 ) Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ) |
25 |
|
isoeq1 |
⊢ ( 𝑓 = OrdIso ( 𝑅 , 𝐴 ) → ( 𝑓 Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ↔ OrdIso ( 𝑅 , 𝐴 ) Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ) ) |
26 |
3 24 25
|
spcedv |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ∃ 𝑓 𝑓 Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ) |
27 |
|
wemoiso2 |
⊢ ( 𝑅 We 𝐴 → ∃* 𝑓 𝑓 Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ) |
28 |
5 27
|
syl |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ∃* 𝑓 𝑓 Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ) |
29 |
|
df-eu |
⊢ ( ∃! 𝑓 𝑓 Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ↔ ( ∃ 𝑓 𝑓 Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ∧ ∃* 𝑓 𝑓 Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ) ) |
30 |
26 28 29
|
sylanbrc |
⊢ ( ( 𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ) → ∃! 𝑓 𝑓 Isom E , 𝑅 ( ( card ‘ 𝐴 ) , 𝐴 ) ) |