| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ OrdIso ( 𝑅 ,  𝐴 )  =  OrdIso ( 𝑅 ,  𝐴 ) | 
						
							| 2 | 1 | oiexg | ⊢ ( 𝐴  ∈  Fin  →  OrdIso ( 𝑅 ,  𝐴 )  ∈  V ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝐴  ∈  Fin )  →  OrdIso ( 𝑅 ,  𝐴 )  ∈  V ) | 
						
							| 4 |  | simpr | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝐴  ∈  Fin )  →  𝐴  ∈  Fin ) | 
						
							| 5 |  | wofi | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝐴  ∈  Fin )  →  𝑅  We  𝐴 ) | 
						
							| 6 | 1 | oiiso | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑅  We  𝐴 )  →  OrdIso ( 𝑅 ,  𝐴 )  Isom   E  ,  𝑅 ( dom  OrdIso ( 𝑅 ,  𝐴 ) ,  𝐴 ) ) | 
						
							| 7 | 4 5 6 | syl2anc | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝐴  ∈  Fin )  →  OrdIso ( 𝑅 ,  𝐴 )  Isom   E  ,  𝑅 ( dom  OrdIso ( 𝑅 ,  𝐴 ) ,  𝐴 ) ) | 
						
							| 8 | 1 | oien | ⊢ ( ( 𝐴  ∈  Fin  ∧  𝑅  We  𝐴 )  →  dom  OrdIso ( 𝑅 ,  𝐴 )  ≈  𝐴 ) | 
						
							| 9 | 4 5 8 | syl2anc | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝐴  ∈  Fin )  →  dom  OrdIso ( 𝑅 ,  𝐴 )  ≈  𝐴 ) | 
						
							| 10 |  | ficardid | ⊢ ( 𝐴  ∈  Fin  →  ( card ‘ 𝐴 )  ≈  𝐴 ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝐴  ∈  Fin )  →  ( card ‘ 𝐴 )  ≈  𝐴 ) | 
						
							| 12 | 11 | ensymd | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝐴  ∈  Fin )  →  𝐴  ≈  ( card ‘ 𝐴 ) ) | 
						
							| 13 |  | entr | ⊢ ( ( dom  OrdIso ( 𝑅 ,  𝐴 )  ≈  𝐴  ∧  𝐴  ≈  ( card ‘ 𝐴 ) )  →  dom  OrdIso ( 𝑅 ,  𝐴 )  ≈  ( card ‘ 𝐴 ) ) | 
						
							| 14 | 9 12 13 | syl2anc | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝐴  ∈  Fin )  →  dom  OrdIso ( 𝑅 ,  𝐴 )  ≈  ( card ‘ 𝐴 ) ) | 
						
							| 15 | 1 | oion | ⊢ ( 𝐴  ∈  Fin  →  dom  OrdIso ( 𝑅 ,  𝐴 )  ∈  On ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝐴  ∈  Fin )  →  dom  OrdIso ( 𝑅 ,  𝐴 )  ∈  On ) | 
						
							| 17 |  | ficardom | ⊢ ( 𝐴  ∈  Fin  →  ( card ‘ 𝐴 )  ∈  ω ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝐴  ∈  Fin )  →  ( card ‘ 𝐴 )  ∈  ω ) | 
						
							| 19 |  | onomeneq | ⊢ ( ( dom  OrdIso ( 𝑅 ,  𝐴 )  ∈  On  ∧  ( card ‘ 𝐴 )  ∈  ω )  →  ( dom  OrdIso ( 𝑅 ,  𝐴 )  ≈  ( card ‘ 𝐴 )  ↔  dom  OrdIso ( 𝑅 ,  𝐴 )  =  ( card ‘ 𝐴 ) ) ) | 
						
							| 20 | 16 18 19 | syl2anc | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝐴  ∈  Fin )  →  ( dom  OrdIso ( 𝑅 ,  𝐴 )  ≈  ( card ‘ 𝐴 )  ↔  dom  OrdIso ( 𝑅 ,  𝐴 )  =  ( card ‘ 𝐴 ) ) ) | 
						
							| 21 | 14 20 | mpbid | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝐴  ∈  Fin )  →  dom  OrdIso ( 𝑅 ,  𝐴 )  =  ( card ‘ 𝐴 ) ) | 
						
							| 22 |  | isoeq4 | ⊢ ( dom  OrdIso ( 𝑅 ,  𝐴 )  =  ( card ‘ 𝐴 )  →  ( OrdIso ( 𝑅 ,  𝐴 )  Isom   E  ,  𝑅 ( dom  OrdIso ( 𝑅 ,  𝐴 ) ,  𝐴 )  ↔  OrdIso ( 𝑅 ,  𝐴 )  Isom   E  ,  𝑅 ( ( card ‘ 𝐴 ) ,  𝐴 ) ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝐴  ∈  Fin )  →  ( OrdIso ( 𝑅 ,  𝐴 )  Isom   E  ,  𝑅 ( dom  OrdIso ( 𝑅 ,  𝐴 ) ,  𝐴 )  ↔  OrdIso ( 𝑅 ,  𝐴 )  Isom   E  ,  𝑅 ( ( card ‘ 𝐴 ) ,  𝐴 ) ) ) | 
						
							| 24 | 7 23 | mpbid | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝐴  ∈  Fin )  →  OrdIso ( 𝑅 ,  𝐴 )  Isom   E  ,  𝑅 ( ( card ‘ 𝐴 ) ,  𝐴 ) ) | 
						
							| 25 |  | isoeq1 | ⊢ ( 𝑓  =  OrdIso ( 𝑅 ,  𝐴 )  →  ( 𝑓  Isom   E  ,  𝑅 ( ( card ‘ 𝐴 ) ,  𝐴 )  ↔  OrdIso ( 𝑅 ,  𝐴 )  Isom   E  ,  𝑅 ( ( card ‘ 𝐴 ) ,  𝐴 ) ) ) | 
						
							| 26 | 3 24 25 | spcedv | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝐴  ∈  Fin )  →  ∃ 𝑓 𝑓  Isom   E  ,  𝑅 ( ( card ‘ 𝐴 ) ,  𝐴 ) ) | 
						
							| 27 |  | wemoiso2 | ⊢ ( 𝑅  We  𝐴  →  ∃* 𝑓 𝑓  Isom   E  ,  𝑅 ( ( card ‘ 𝐴 ) ,  𝐴 ) ) | 
						
							| 28 | 5 27 | syl | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝐴  ∈  Fin )  →  ∃* 𝑓 𝑓  Isom   E  ,  𝑅 ( ( card ‘ 𝐴 ) ,  𝐴 ) ) | 
						
							| 29 |  | df-eu | ⊢ ( ∃! 𝑓 𝑓  Isom   E  ,  𝑅 ( ( card ‘ 𝐴 ) ,  𝐴 )  ↔  ( ∃ 𝑓 𝑓  Isom   E  ,  𝑅 ( ( card ‘ 𝐴 ) ,  𝐴 )  ∧  ∃* 𝑓 𝑓  Isom   E  ,  𝑅 ( ( card ‘ 𝐴 ) ,  𝐴 ) ) ) | 
						
							| 30 | 26 28 29 | sylanbrc | ⊢ ( ( 𝑅  Or  𝐴  ∧  𝐴  ∈  Fin )  →  ∃! 𝑓 𝑓  Isom   E  ,  𝑅 ( ( card ‘ 𝐴 ) ,  𝐴 ) ) |