Metamath Proof Explorer


Theorem finnum

Description: Every finite set is numerable. (Contributed by Mario Carneiro, 4-Feb-2013) (Revised by Mario Carneiro, 29-Apr-2015)

Ref Expression
Assertion finnum ( 𝐴 ∈ Fin → 𝐴 ∈ dom card )

Proof

Step Hyp Ref Expression
1 isfi ( 𝐴 ∈ Fin ↔ ∃ 𝑥 ∈ ω 𝐴𝑥 )
2 nnon ( 𝑥 ∈ ω → 𝑥 ∈ On )
3 ensym ( 𝐴𝑥𝑥𝐴 )
4 isnumi ( ( 𝑥 ∈ On ∧ 𝑥𝐴 ) → 𝐴 ∈ dom card )
5 2 3 4 syl2an ( ( 𝑥 ∈ ω ∧ 𝐴𝑥 ) → 𝐴 ∈ dom card )
6 5 rexlimiva ( ∃ 𝑥 ∈ ω 𝐴𝑥𝐴 ∈ dom card )
7 1 6 sylbi ( 𝐴 ∈ Fin → 𝐴 ∈ dom card )