| Step | Hyp | Ref | Expression | 
						
							| 1 |  | finnzfsuppd.1 | ⊢ ( 𝜑  →  𝐹  ∈  𝑉 ) | 
						
							| 2 |  | finnzfsuppd.2 | ⊢ ( 𝜑  →  𝐹  Fn  𝐷 ) | 
						
							| 3 |  | finnzfsuppd.3 | ⊢ ( 𝜑  →  𝑍  ∈  𝑈 ) | 
						
							| 4 |  | finnzfsuppd.4 | ⊢ ( 𝜑  →  𝐴  ∈  Fin ) | 
						
							| 5 |  | finnzfsuppd.5 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑥  ∈  𝐴  ∨  ( 𝐹 ‘ 𝑥 )  =  𝑍 ) ) | 
						
							| 6 | 1 2 | fndmexd | ⊢ ( 𝜑  →  𝐷  ∈  V ) | 
						
							| 7 |  | elsuppfn | ⊢ ( ( 𝐹  Fn  𝐷  ∧  𝐷  ∈  V  ∧  𝑍  ∈  𝑈 )  →  ( 𝑥  ∈  ( 𝐹  supp  𝑍 )  ↔  ( 𝑥  ∈  𝐷  ∧  ( 𝐹 ‘ 𝑥 )  ≠  𝑍 ) ) ) | 
						
							| 8 | 2 6 3 7 | syl3anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐹  supp  𝑍 )  ↔  ( 𝑥  ∈  𝐷  ∧  ( 𝐹 ‘ 𝑥 )  ≠  𝑍 ) ) ) | 
						
							| 9 | 8 | biimpa | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐹  supp  𝑍 ) )  →  ( 𝑥  ∈  𝐷  ∧  ( 𝐹 ‘ 𝑥 )  ≠  𝑍 ) ) | 
						
							| 10 | 9 | simpld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐹  supp  𝑍 ) )  →  𝑥  ∈  𝐷 ) | 
						
							| 11 | 10 5 | syldan | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐹  supp  𝑍 ) )  →  ( 𝑥  ∈  𝐴  ∨  ( 𝐹 ‘ 𝑥 )  =  𝑍 ) ) | 
						
							| 12 | 9 | simprd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐹  supp  𝑍 ) )  →  ( 𝐹 ‘ 𝑥 )  ≠  𝑍 ) | 
						
							| 13 | 12 | neneqd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐹  supp  𝑍 ) )  →  ¬  ( 𝐹 ‘ 𝑥 )  =  𝑍 ) | 
						
							| 14 | 11 13 | olcnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 𝐹  supp  𝑍 ) )  →  𝑥  ∈  𝐴 ) | 
						
							| 15 | 14 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐹  supp  𝑍 )  →  𝑥  ∈  𝐴 ) ) | 
						
							| 16 | 15 | ssrdv | ⊢ ( 𝜑  →  ( 𝐹  supp  𝑍 )  ⊆  𝐴 ) | 
						
							| 17 | 4 16 | ssfid | ⊢ ( 𝜑  →  ( 𝐹  supp  𝑍 )  ∈  Fin ) | 
						
							| 18 |  | fnfun | ⊢ ( 𝐹  Fn  𝐷  →  Fun  𝐹 ) | 
						
							| 19 | 2 18 | syl | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 20 |  | funisfsupp | ⊢ ( ( Fun  𝐹  ∧  𝐹  ∈  𝑉  ∧  𝑍  ∈  𝑈 )  →  ( 𝐹  finSupp  𝑍  ↔  ( 𝐹  supp  𝑍 )  ∈  Fin ) ) | 
						
							| 21 | 19 1 3 20 | syl3anc | ⊢ ( 𝜑  →  ( 𝐹  finSupp  𝑍  ↔  ( 𝐹  supp  𝑍 )  ∈  Fin ) ) | 
						
							| 22 | 17 21 | mpbird | ⊢ ( 𝜑  →  𝐹  finSupp  𝑍 ) |