| Step | Hyp | Ref | Expression | 
						
							| 1 |  | finodsubmsubg.o | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 2 |  | finodsubmsubg.g | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 3 |  | finodsubmsubg.s | ⊢ ( 𝜑  →  𝑆  ∈  ( SubMnd ‘ 𝐺 ) ) | 
						
							| 4 |  | finodsubmsubg.1 | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  𝑆 ( 𝑂 ‘ 𝑎 )  ∈  ℕ ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 6 |  | eqid | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ 𝐺 ) | 
						
							| 7 |  | eqid | ⊢ ( invg ‘ 𝐺 )  =  ( invg ‘ 𝐺 ) | 
						
							| 8 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  𝐺  ∈  Grp ) | 
						
							| 9 | 5 | submss | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  𝑆  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 10 | 3 9 | syl | ⊢ ( 𝜑  →  𝑆  ⊆  ( Base ‘ 𝐺 ) ) | 
						
							| 11 | 10 | sselda | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  𝑎  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 12 | 5 1 6 7 8 11 | odm1inv | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ( ( 𝑂 ‘ 𝑎 )  −  1 ) ( .g ‘ 𝐺 ) 𝑎 )  =  ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  ( 𝑂 ‘ 𝑎 )  ∈  ℕ )  →  ( ( ( 𝑂 ‘ 𝑎 )  −  1 ) ( .g ‘ 𝐺 ) 𝑎 )  =  ( ( invg ‘ 𝐺 ) ‘ 𝑎 ) ) | 
						
							| 14 |  | eqid | ⊢ ( Base ‘ ( 𝐺  ↾s  𝑆 ) )  =  ( Base ‘ ( 𝐺  ↾s  𝑆 ) ) | 
						
							| 15 |  | eqid | ⊢ ( .g ‘ ( 𝐺  ↾s  𝑆 ) )  =  ( .g ‘ ( 𝐺  ↾s  𝑆 ) ) | 
						
							| 16 |  | eqid | ⊢ ( 𝐺  ↾s  𝑆 )  =  ( 𝐺  ↾s  𝑆 ) | 
						
							| 17 | 16 | submmnd | ⊢ ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  →  ( 𝐺  ↾s  𝑆 )  ∈  Mnd ) | 
						
							| 18 | 3 17 | syl | ⊢ ( 𝜑  →  ( 𝐺  ↾s  𝑆 )  ∈  Mnd ) | 
						
							| 19 | 18 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  ( 𝑂 ‘ 𝑎 )  ∈  ℕ )  →  ( 𝐺  ↾s  𝑆 )  ∈  Mnd ) | 
						
							| 20 |  | nnm1nn0 | ⊢ ( ( 𝑂 ‘ 𝑎 )  ∈  ℕ  →  ( ( 𝑂 ‘ 𝑎 )  −  1 )  ∈  ℕ0 ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  ( 𝑂 ‘ 𝑎 )  ∈  ℕ )  →  ( ( 𝑂 ‘ 𝑎 )  −  1 )  ∈  ℕ0 ) | 
						
							| 22 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  ( 𝑂 ‘ 𝑎 )  ∈  ℕ )  →  𝑎  ∈  𝑆 ) | 
						
							| 23 | 16 5 | ressbas2 | ⊢ ( 𝑆  ⊆  ( Base ‘ 𝐺 )  →  𝑆  =  ( Base ‘ ( 𝐺  ↾s  𝑆 ) ) ) | 
						
							| 24 | 10 23 | syl | ⊢ ( 𝜑  →  𝑆  =  ( Base ‘ ( 𝐺  ↾s  𝑆 ) ) ) | 
						
							| 25 | 24 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  ( 𝑂 ‘ 𝑎 )  ∈  ℕ )  →  𝑆  =  ( Base ‘ ( 𝐺  ↾s  𝑆 ) ) ) | 
						
							| 26 | 22 25 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  ( 𝑂 ‘ 𝑎 )  ∈  ℕ )  →  𝑎  ∈  ( Base ‘ ( 𝐺  ↾s  𝑆 ) ) ) | 
						
							| 27 | 14 15 19 21 26 | mulgnn0cld | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  ( 𝑂 ‘ 𝑎 )  ∈  ℕ )  →  ( ( ( 𝑂 ‘ 𝑎 )  −  1 ) ( .g ‘ ( 𝐺  ↾s  𝑆 ) ) 𝑎 )  ∈  ( Base ‘ ( 𝐺  ↾s  𝑆 ) ) ) | 
						
							| 28 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  ( 𝑂 ‘ 𝑎 )  ∈  ℕ )  →  𝑆  ∈  ( SubMnd ‘ 𝐺 ) ) | 
						
							| 29 | 6 16 15 | submmulg | ⊢ ( ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  ( ( 𝑂 ‘ 𝑎 )  −  1 )  ∈  ℕ0  ∧  𝑎  ∈  𝑆 )  →  ( ( ( 𝑂 ‘ 𝑎 )  −  1 ) ( .g ‘ 𝐺 ) 𝑎 )  =  ( ( ( 𝑂 ‘ 𝑎 )  −  1 ) ( .g ‘ ( 𝐺  ↾s  𝑆 ) ) 𝑎 ) ) | 
						
							| 30 | 28 21 22 29 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  ( 𝑂 ‘ 𝑎 )  ∈  ℕ )  →  ( ( ( 𝑂 ‘ 𝑎 )  −  1 ) ( .g ‘ 𝐺 ) 𝑎 )  =  ( ( ( 𝑂 ‘ 𝑎 )  −  1 ) ( .g ‘ ( 𝐺  ↾s  𝑆 ) ) 𝑎 ) ) | 
						
							| 31 | 27 30 25 | 3eltr4d | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  ( 𝑂 ‘ 𝑎 )  ∈  ℕ )  →  ( ( ( 𝑂 ‘ 𝑎 )  −  1 ) ( .g ‘ 𝐺 ) 𝑎 )  ∈  𝑆 ) | 
						
							| 32 | 13 31 | eqeltrrd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  ∧  ( 𝑂 ‘ 𝑎 )  ∈  ℕ )  →  ( ( invg ‘ 𝐺 ) ‘ 𝑎 )  ∈  𝑆 ) | 
						
							| 33 | 32 | ex | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝑆 )  →  ( ( 𝑂 ‘ 𝑎 )  ∈  ℕ  →  ( ( invg ‘ 𝐺 ) ‘ 𝑎 )  ∈  𝑆 ) ) | 
						
							| 34 | 33 | ralimdva | ⊢ ( 𝜑  →  ( ∀ 𝑎  ∈  𝑆 ( 𝑂 ‘ 𝑎 )  ∈  ℕ  →  ∀ 𝑎  ∈  𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑎 )  ∈  𝑆 ) ) | 
						
							| 35 | 4 34 | mpd | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑎 )  ∈  𝑆 ) | 
						
							| 36 | 7 | issubg3 | ⊢ ( 𝐺  ∈  Grp  →  ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ↔  ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  ∀ 𝑎  ∈  𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑎 )  ∈  𝑆 ) ) ) | 
						
							| 37 | 2 36 | syl | ⊢ ( 𝜑  →  ( 𝑆  ∈  ( SubGrp ‘ 𝐺 )  ↔  ( 𝑆  ∈  ( SubMnd ‘ 𝐺 )  ∧  ∀ 𝑎  ∈  𝑆 ( ( invg ‘ 𝐺 ) ‘ 𝑎 )  ∈  𝑆 ) ) ) | 
						
							| 38 | 3 35 37 | mpbir2and | ⊢ ( 𝜑  →  𝑆  ∈  ( SubGrp ‘ 𝐺 ) ) |