| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sseq1 |
⊢ ( 𝑎 = ∅ → ( 𝑎 ⊆ ∪ 𝐴 ↔ ∅ ⊆ ∪ 𝐴 ) ) |
| 2 |
|
sseq1 |
⊢ ( 𝑎 = ∅ → ( 𝑎 ⊆ 𝑧 ↔ ∅ ⊆ 𝑧 ) ) |
| 3 |
2
|
rexbidv |
⊢ ( 𝑎 = ∅ → ( ∃ 𝑧 ∈ 𝐴 𝑎 ⊆ 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 ∅ ⊆ 𝑧 ) ) |
| 4 |
1 3
|
imbi12d |
⊢ ( 𝑎 = ∅ → ( ( 𝑎 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑎 ⊆ 𝑧 ) ↔ ( ∅ ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 ∅ ⊆ 𝑧 ) ) ) |
| 5 |
4
|
imbi2d |
⊢ ( 𝑎 = ∅ → ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( 𝑎 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑎 ⊆ 𝑧 ) ) ↔ ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( ∅ ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 ∅ ⊆ 𝑧 ) ) ) ) |
| 6 |
|
sseq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ⊆ ∪ 𝐴 ↔ 𝑏 ⊆ ∪ 𝐴 ) ) |
| 7 |
|
sseq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ⊆ 𝑧 ↔ 𝑏 ⊆ 𝑧 ) ) |
| 8 |
7
|
rexbidv |
⊢ ( 𝑎 = 𝑏 → ( ∃ 𝑧 ∈ 𝐴 𝑎 ⊆ 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 𝑏 ⊆ 𝑧 ) ) |
| 9 |
6 8
|
imbi12d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑎 ⊆ 𝑧 ) ↔ ( 𝑏 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑏 ⊆ 𝑧 ) ) ) |
| 10 |
9
|
imbi2d |
⊢ ( 𝑎 = 𝑏 → ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( 𝑎 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑎 ⊆ 𝑧 ) ) ↔ ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( 𝑏 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑏 ⊆ 𝑧 ) ) ) ) |
| 11 |
|
sseq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ⊆ ∪ 𝐴 ↔ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) ) |
| 12 |
|
sseq1 |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( 𝑎 ⊆ 𝑧 ↔ ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) |
| 13 |
12
|
rexbidv |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ∃ 𝑧 ∈ 𝐴 𝑎 ⊆ 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) |
| 14 |
11 13
|
imbi12d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( 𝑎 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑎 ⊆ 𝑧 ) ↔ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) ) |
| 15 |
14
|
imbi2d |
⊢ ( 𝑎 = ( 𝑏 ∪ { 𝑐 } ) → ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( 𝑎 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑎 ⊆ 𝑧 ) ) ↔ ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) ) ) |
| 16 |
|
sseq1 |
⊢ ( 𝑎 = 𝐵 → ( 𝑎 ⊆ ∪ 𝐴 ↔ 𝐵 ⊆ ∪ 𝐴 ) ) |
| 17 |
|
sseq1 |
⊢ ( 𝑎 = 𝐵 → ( 𝑎 ⊆ 𝑧 ↔ 𝐵 ⊆ 𝑧 ) ) |
| 18 |
17
|
rexbidv |
⊢ ( 𝑎 = 𝐵 → ( ∃ 𝑧 ∈ 𝐴 𝑎 ⊆ 𝑧 ↔ ∃ 𝑧 ∈ 𝐴 𝐵 ⊆ 𝑧 ) ) |
| 19 |
16 18
|
imbi12d |
⊢ ( 𝑎 = 𝐵 → ( ( 𝑎 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑎 ⊆ 𝑧 ) ↔ ( 𝐵 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝐵 ⊆ 𝑧 ) ) ) |
| 20 |
19
|
imbi2d |
⊢ ( 𝑎 = 𝐵 → ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( 𝑎 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑎 ⊆ 𝑧 ) ) ↔ ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( 𝐵 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝐵 ⊆ 𝑧 ) ) ) ) |
| 21 |
|
0ss |
⊢ ∅ ⊆ 𝑧 |
| 22 |
21
|
rgenw |
⊢ ∀ 𝑧 ∈ 𝐴 ∅ ⊆ 𝑧 |
| 23 |
|
r19.2z |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑧 ∈ 𝐴 ∅ ⊆ 𝑧 ) → ∃ 𝑧 ∈ 𝐴 ∅ ⊆ 𝑧 ) |
| 24 |
22 23
|
mpan2 |
⊢ ( 𝐴 ≠ ∅ → ∃ 𝑧 ∈ 𝐴 ∅ ⊆ 𝑧 ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ∃ 𝑧 ∈ 𝐴 ∅ ⊆ 𝑧 ) |
| 26 |
25
|
a1d |
⊢ ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( ∅ ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 ∅ ⊆ 𝑧 ) ) |
| 27 |
|
id |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 → ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) |
| 28 |
27
|
unssad |
⊢ ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 → 𝑏 ⊆ ∪ 𝐴 ) |
| 29 |
28
|
imim1i |
⊢ ( ( 𝑏 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑏 ⊆ 𝑧 ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑏 ⊆ 𝑧 ) ) |
| 30 |
|
sseq2 |
⊢ ( 𝑧 = 𝑤 → ( 𝑏 ⊆ 𝑧 ↔ 𝑏 ⊆ 𝑤 ) ) |
| 31 |
30
|
cbvrexvw |
⊢ ( ∃ 𝑧 ∈ 𝐴 𝑏 ⊆ 𝑧 ↔ ∃ 𝑤 ∈ 𝐴 𝑏 ⊆ 𝑤 ) |
| 32 |
|
simpr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) → ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) |
| 33 |
32
|
unssbd |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) → { 𝑐 } ⊆ ∪ 𝐴 ) |
| 34 |
|
vex |
⊢ 𝑐 ∈ V |
| 35 |
34
|
snss |
⊢ ( 𝑐 ∈ ∪ 𝐴 ↔ { 𝑐 } ⊆ ∪ 𝐴 ) |
| 36 |
33 35
|
sylibr |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) → 𝑐 ∈ ∪ 𝐴 ) |
| 37 |
|
eluni2 |
⊢ ( 𝑐 ∈ ∪ 𝐴 ↔ ∃ 𝑢 ∈ 𝐴 𝑐 ∈ 𝑢 ) |
| 38 |
36 37
|
sylib |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) → ∃ 𝑢 ∈ 𝐴 𝑐 ∈ 𝑢 ) |
| 39 |
|
reeanv |
⊢ ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( 𝑐 ∈ 𝑢 ∧ 𝑏 ⊆ 𝑤 ) ↔ ( ∃ 𝑢 ∈ 𝐴 𝑐 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝐴 𝑏 ⊆ 𝑤 ) ) |
| 40 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑐 ∈ 𝑢 ∧ 𝑏 ⊆ 𝑤 ) ) ) → [⊊] Or 𝐴 ) |
| 41 |
|
simprlr |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑐 ∈ 𝑢 ∧ 𝑏 ⊆ 𝑤 ) ) ) → 𝑤 ∈ 𝐴 ) |
| 42 |
|
simprll |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑐 ∈ 𝑢 ∧ 𝑏 ⊆ 𝑤 ) ) ) → 𝑢 ∈ 𝐴 ) |
| 43 |
|
sorpssun |
⊢ ( ( [⊊] Or 𝐴 ∧ ( 𝑤 ∈ 𝐴 ∧ 𝑢 ∈ 𝐴 ) ) → ( 𝑤 ∪ 𝑢 ) ∈ 𝐴 ) |
| 44 |
40 41 42 43
|
syl12anc |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑐 ∈ 𝑢 ∧ 𝑏 ⊆ 𝑤 ) ) ) → ( 𝑤 ∪ 𝑢 ) ∈ 𝐴 ) |
| 45 |
|
simprrr |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑐 ∈ 𝑢 ∧ 𝑏 ⊆ 𝑤 ) ) ) → 𝑏 ⊆ 𝑤 ) |
| 46 |
|
simprrl |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑐 ∈ 𝑢 ∧ 𝑏 ⊆ 𝑤 ) ) ) → 𝑐 ∈ 𝑢 ) |
| 47 |
46
|
snssd |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑐 ∈ 𝑢 ∧ 𝑏 ⊆ 𝑤 ) ) ) → { 𝑐 } ⊆ 𝑢 ) |
| 48 |
|
unss12 |
⊢ ( ( 𝑏 ⊆ 𝑤 ∧ { 𝑐 } ⊆ 𝑢 ) → ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑤 ∪ 𝑢 ) ) |
| 49 |
45 47 48
|
syl2anc |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑐 ∈ 𝑢 ∧ 𝑏 ⊆ 𝑤 ) ) ) → ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑤 ∪ 𝑢 ) ) |
| 50 |
|
sseq2 |
⊢ ( 𝑧 = ( 𝑤 ∪ 𝑢 ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ↔ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑤 ∪ 𝑢 ) ) ) |
| 51 |
50
|
rspcev |
⊢ ( ( ( 𝑤 ∪ 𝑢 ) ∈ 𝐴 ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ( 𝑤 ∪ 𝑢 ) ) → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) |
| 52 |
44 49 51
|
syl2anc |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) ∧ ( ( 𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ∧ ( 𝑐 ∈ 𝑢 ∧ 𝑏 ⊆ 𝑤 ) ) ) → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) |
| 53 |
52
|
expr |
⊢ ( ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) ∧ ( 𝑢 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴 ) ) → ( ( 𝑐 ∈ 𝑢 ∧ 𝑏 ⊆ 𝑤 ) → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) |
| 54 |
53
|
rexlimdvva |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) → ( ∃ 𝑢 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 ( 𝑐 ∈ 𝑢 ∧ 𝑏 ⊆ 𝑤 ) → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) |
| 55 |
39 54
|
biimtrrid |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) → ( ( ∃ 𝑢 ∈ 𝐴 𝑐 ∈ 𝑢 ∧ ∃ 𝑤 ∈ 𝐴 𝑏 ⊆ 𝑤 ) → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) |
| 56 |
38 55
|
mpand |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) → ( ∃ 𝑤 ∈ 𝐴 𝑏 ⊆ 𝑤 → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) |
| 57 |
31 56
|
biimtrid |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 ) → ( ∃ 𝑧 ∈ 𝐴 𝑏 ⊆ 𝑧 → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) |
| 58 |
57
|
ex |
⊢ ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 → ( ∃ 𝑧 ∈ 𝐴 𝑏 ⊆ 𝑧 → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) ) |
| 59 |
58
|
a2d |
⊢ ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑏 ⊆ 𝑧 ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) ) |
| 60 |
29 59
|
syl5 |
⊢ ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( ( 𝑏 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑏 ⊆ 𝑧 ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) ) |
| 61 |
60
|
a2i |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( 𝑏 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑏 ⊆ 𝑧 ) ) → ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) ) |
| 62 |
61
|
a1i |
⊢ ( 𝑏 ∈ Fin → ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( 𝑏 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝑏 ⊆ 𝑧 ) ) → ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( ( 𝑏 ∪ { 𝑐 } ) ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 ( 𝑏 ∪ { 𝑐 } ) ⊆ 𝑧 ) ) ) ) |
| 63 |
5 10 15 20 26 62
|
findcard2 |
⊢ ( 𝐵 ∈ Fin → ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( 𝐵 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝐵 ⊆ 𝑧 ) ) ) |
| 64 |
63
|
com12 |
⊢ ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) → ( 𝐵 ∈ Fin → ( 𝐵 ⊆ ∪ 𝐴 → ∃ 𝑧 ∈ 𝐴 𝐵 ⊆ 𝑧 ) ) ) |
| 65 |
64
|
imp32 |
⊢ ( ( ( 𝐴 ≠ ∅ ∧ [⊊] Or 𝐴 ) ∧ ( 𝐵 ∈ Fin ∧ 𝐵 ⊆ ∪ 𝐴 ) ) → ∃ 𝑧 ∈ 𝐴 𝐵 ⊆ 𝑧 ) |