Metamath Proof Explorer


Theorem finsubmsubg

Description: A submonoid of a finite group is a subgroup. This does not extend to infinite groups, as the submonoid NN0 of the group ( ZZ , + ) shows. Note also that the union of a submonoid and its inverses need not be a submonoid, as the submonoid ( NN0 \ { 1 } ) of the group ( ZZ , + ) shows: 3 is in that submonoid, -2 is the inverse of 2, but 1 is not in their union. Or simply, the subgroup generated by ( NN0 \ { 1 } ) is ZZ , not ( ZZ \ { 1 , -u 1 } ) . (Contributed by SN, 31-Jan-2025)

Ref Expression
Hypotheses finsubmsubg.b 𝐵 = ( Base ‘ 𝐺 )
finsubmsubg.g ( 𝜑𝐺 ∈ Grp )
finsubmsubg.s ( 𝜑𝑆 ∈ ( SubMnd ‘ 𝐺 ) )
finsubmsubg.1 ( 𝜑𝐵 ∈ Fin )
Assertion finsubmsubg ( 𝜑𝑆 ∈ ( SubGrp ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 finsubmsubg.b 𝐵 = ( Base ‘ 𝐺 )
2 finsubmsubg.g ( 𝜑𝐺 ∈ Grp )
3 finsubmsubg.s ( 𝜑𝑆 ∈ ( SubMnd ‘ 𝐺 ) )
4 finsubmsubg.1 ( 𝜑𝐵 ∈ Fin )
5 eqid ( od ‘ 𝐺 ) = ( od ‘ 𝐺 )
6 2 adantr ( ( 𝜑𝑎𝑆 ) → 𝐺 ∈ Grp )
7 4 adantr ( ( 𝜑𝑎𝑆 ) → 𝐵 ∈ Fin )
8 1 submss ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆𝐵 )
9 3 8 syl ( 𝜑𝑆𝐵 )
10 9 sselda ( ( 𝜑𝑎𝑆 ) → 𝑎𝐵 )
11 1 5 odcl2 ( ( 𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑎𝐵 ) → ( ( od ‘ 𝐺 ) ‘ 𝑎 ) ∈ ℕ )
12 6 7 10 11 syl3anc ( ( 𝜑𝑎𝑆 ) → ( ( od ‘ 𝐺 ) ‘ 𝑎 ) ∈ ℕ )
13 12 ralrimiva ( 𝜑 → ∀ 𝑎𝑆 ( ( od ‘ 𝐺 ) ‘ 𝑎 ) ∈ ℕ )
14 5 2 3 13 finodsubmsubg ( 𝜑𝑆 ∈ ( SubGrp ‘ 𝐺 ) )