Step |
Hyp |
Ref |
Expression |
1 |
|
finsumvtxdg2sstep.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
finsumvtxdg2sstep.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
3 |
|
finsumvtxdg2sstep.k |
⊢ 𝐾 = ( 𝑉 ∖ { 𝑁 } ) |
4 |
|
finsumvtxdg2sstep.i |
⊢ 𝐼 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } |
5 |
|
finsumvtxdg2sstep.p |
⊢ 𝑃 = ( 𝐸 ↾ 𝐼 ) |
6 |
|
finsumvtxdg2sstep.s |
⊢ 𝑆 = 〈 𝐾 , 𝑃 〉 |
7 |
|
finresfin |
⊢ ( 𝐸 ∈ Fin → ( 𝐸 ↾ 𝐼 ) ∈ Fin ) |
8 |
7
|
ad2antll |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( 𝐸 ↾ 𝐼 ) ∈ Fin ) |
9 |
5 8
|
eqeltrid |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → 𝑃 ∈ Fin ) |
10 |
|
difsnid |
⊢ ( 𝑁 ∈ 𝑉 → ( ( 𝑉 ∖ { 𝑁 } ) ∪ { 𝑁 } ) = 𝑉 ) |
11 |
10
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ( 𝑉 ∖ { 𝑁 } ) ∪ { 𝑁 } ) = 𝑉 ) |
12 |
11
|
eqcomd |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → 𝑉 = ( ( 𝑉 ∖ { 𝑁 } ) ∪ { 𝑁 } ) ) |
13 |
12
|
sumeq1d |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → Σ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = Σ 𝑣 ∈ ( ( 𝑉 ∖ { 𝑁 } ) ∪ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ) |
14 |
|
diffi |
⊢ ( 𝑉 ∈ Fin → ( 𝑉 ∖ { 𝑁 } ) ∈ Fin ) |
15 |
14
|
adantr |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → ( 𝑉 ∖ { 𝑁 } ) ∈ Fin ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( 𝑉 ∖ { 𝑁 } ) ∈ Fin ) |
17 |
|
simpr |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑁 ∈ 𝑉 ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → 𝑁 ∈ 𝑉 ) |
19 |
|
neldifsn |
⊢ ¬ 𝑁 ∈ ( 𝑉 ∖ { 𝑁 } ) |
20 |
19
|
nelir |
⊢ 𝑁 ∉ ( 𝑉 ∖ { 𝑁 } ) |
21 |
20
|
a1i |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → 𝑁 ∉ ( 𝑉 ∖ { 𝑁 } ) ) |
22 |
|
dmfi |
⊢ ( 𝐸 ∈ Fin → dom 𝐸 ∈ Fin ) |
23 |
22
|
ad2antll |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → dom 𝐸 ∈ Fin ) |
24 |
10
|
eleq2d |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝑣 ∈ ( ( 𝑉 ∖ { 𝑁 } ) ∪ { 𝑁 } ) ↔ 𝑣 ∈ 𝑉 ) ) |
25 |
24
|
biimpd |
⊢ ( 𝑁 ∈ 𝑉 → ( 𝑣 ∈ ( ( 𝑉 ∖ { 𝑁 } ) ∪ { 𝑁 } ) → 𝑣 ∈ 𝑉 ) ) |
26 |
25
|
ad2antlr |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( 𝑣 ∈ ( ( 𝑉 ∖ { 𝑁 } ) ∪ { 𝑁 } ) → 𝑣 ∈ 𝑉 ) ) |
27 |
26
|
imp |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ 𝑣 ∈ ( ( 𝑉 ∖ { 𝑁 } ) ∪ { 𝑁 } ) ) → 𝑣 ∈ 𝑉 ) |
28 |
|
eqid |
⊢ dom 𝐸 = dom 𝐸 |
29 |
1 2 28
|
vtxdgfisnn0 |
⊢ ( ( dom 𝐸 ∈ Fin ∧ 𝑣 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℕ0 ) |
30 |
23 27 29
|
syl2an2r |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ 𝑣 ∈ ( ( 𝑉 ∖ { 𝑁 } ) ∪ { 𝑁 } ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℕ0 ) |
31 |
30
|
nn0zd |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ 𝑣 ∈ ( ( 𝑉 ∖ { 𝑁 } ) ∪ { 𝑁 } ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℤ ) |
32 |
31
|
ralrimiva |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ∀ 𝑣 ∈ ( ( 𝑉 ∖ { 𝑁 } ) ∪ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℤ ) |
33 |
|
fsumsplitsnun |
⊢ ( ( ( 𝑉 ∖ { 𝑁 } ) ∈ Fin ∧ ( 𝑁 ∈ 𝑉 ∧ 𝑁 ∉ ( 𝑉 ∖ { 𝑁 } ) ) ∧ ∀ 𝑣 ∈ ( ( 𝑉 ∖ { 𝑁 } ) ∪ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ∈ ℤ ) → Σ 𝑣 ∈ ( ( 𝑉 ∖ { 𝑁 } ) ∪ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) + ⦋ 𝑁 / 𝑣 ⦌ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ) ) |
34 |
16 18 21 32 33
|
syl121anc |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → Σ 𝑣 ∈ ( ( 𝑉 ∖ { 𝑁 } ) ∪ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) + ⦋ 𝑁 / 𝑣 ⦌ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ) ) |
35 |
|
fveq2 |
⊢ ( 𝑣 = 𝑁 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ) |
36 |
35
|
adantl |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝑣 = 𝑁 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ) |
37 |
17 36
|
csbied |
⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ⦋ 𝑁 / 𝑣 ⦌ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ) |
38 |
37
|
adantr |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ⦋ 𝑁 / 𝑣 ⦌ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ) |
39 |
38
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) + ⦋ 𝑁 / 𝑣 ⦌ ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ) = ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) + ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ) ) |
40 |
13 34 39
|
3eqtrd |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → Σ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) + ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ) ) |
41 |
40
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ) → Σ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) + ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ) ) |
42 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝐸 ‘ 𝑗 ) = ( 𝐸 ‘ 𝑖 ) ) |
43 |
42
|
eleq2d |
⊢ ( 𝑗 = 𝑖 → ( 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) ↔ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) ) ) |
44 |
43
|
cbvrabv |
⊢ { 𝑗 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) } = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } |
45 |
1 2 3 4 5 6 44
|
finsumvtxdg2ssteplem2 |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) = ( ( ♯ ‘ { 𝑗 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) |
46 |
45
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) + ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ) = ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) + ( ( ♯ ‘ { 𝑗 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) ) |
47 |
46
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) + ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ) = ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) + ( ( ♯ ‘ { 𝑗 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) ) |
48 |
1 2 3 4 5 6 44
|
finsumvtxdg2ssteplem4 |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) + ( ( ♯ ‘ { 𝑗 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( 2 · ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ { 𝑗 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) } ) ) ) ) |
49 |
44
|
fveq2i |
⊢ ( ♯ ‘ { 𝑗 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) } ) = ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) |
50 |
49
|
oveq2i |
⊢ ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ { 𝑗 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) } ) ) = ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) |
51 |
50
|
oveq2i |
⊢ ( 2 · ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ { 𝑗 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) } ) ) ) = ( 2 · ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
52 |
51
|
a1i |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ) → ( 2 · ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ { 𝑗 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑗 ) } ) ) ) = ( 2 · ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) ) |
53 |
47 48 52
|
3eqtrd |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) + ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑁 ) ) = ( 2 · ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) ) |
54 |
|
eqid |
⊢ { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } |
55 |
1 2 3 4 5 6 54
|
finsumvtxdg2ssteplem1 |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ♯ ‘ 𝐸 ) = ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
56 |
55
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( 2 · ( ♯ ‘ 𝐸 ) ) = ( 2 · ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) ) |
57 |
56
|
eqcomd |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( 2 · ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) = ( 2 · ( ♯ ‘ 𝐸 ) ) ) |
58 |
57
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ) → ( 2 · ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) = ( 2 · ( ♯ ‘ 𝐸 ) ) ) |
59 |
41 53 58
|
3eqtrd |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ) → Σ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝐸 ) ) ) |
60 |
59
|
ex |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) → Σ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝐸 ) ) ) ) |
61 |
9 60
|
embantd |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ( 𝑃 ∈ Fin → Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ) → Σ 𝑣 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝐸 ) ) ) ) |