| Step |
Hyp |
Ref |
Expression |
| 1 |
|
finsumvtxdg2sstep.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
finsumvtxdg2sstep.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
| 3 |
|
finsumvtxdg2sstep.k |
⊢ 𝐾 = ( 𝑉 ∖ { 𝑁 } ) |
| 4 |
|
finsumvtxdg2sstep.i |
⊢ 𝐼 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } |
| 5 |
|
finsumvtxdg2sstep.p |
⊢ 𝑃 = ( 𝐸 ↾ 𝐼 ) |
| 6 |
|
finsumvtxdg2sstep.s |
⊢ 𝑆 = 〈 𝐾 , 𝑃 〉 |
| 7 |
|
finsumvtxdg2ssteplem.j |
⊢ 𝐽 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } |
| 8 |
1 2 3 4 5 6 7
|
vtxdginducedm1fi |
⊢ ( 𝐸 ∈ Fin → ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
| 9 |
8
|
ad2antll |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
| 10 |
9
|
sumeq2d |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
| 11 |
|
diffi |
⊢ ( 𝑉 ∈ Fin → ( 𝑉 ∖ { 𝑁 } ) ∈ Fin ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → ( 𝑉 ∖ { 𝑁 } ) ∈ Fin ) |
| 13 |
12
|
adantl |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( 𝑉 ∖ { 𝑁 } ) ∈ Fin ) |
| 14 |
5
|
dmeqi |
⊢ dom 𝑃 = dom ( 𝐸 ↾ 𝐼 ) |
| 15 |
|
finresfin |
⊢ ( 𝐸 ∈ Fin → ( 𝐸 ↾ 𝐼 ) ∈ Fin ) |
| 16 |
|
dmfi |
⊢ ( ( 𝐸 ↾ 𝐼 ) ∈ Fin → dom ( 𝐸 ↾ 𝐼 ) ∈ Fin ) |
| 17 |
15 16
|
syl |
⊢ ( 𝐸 ∈ Fin → dom ( 𝐸 ↾ 𝐼 ) ∈ Fin ) |
| 18 |
14 17
|
eqeltrid |
⊢ ( 𝐸 ∈ Fin → dom 𝑃 ∈ Fin ) |
| 19 |
18
|
ad2antll |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → dom 𝑃 ∈ Fin ) |
| 20 |
3
|
eqcomi |
⊢ ( 𝑉 ∖ { 𝑁 } ) = 𝐾 |
| 21 |
20
|
eleq2i |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ↔ 𝑣 ∈ 𝐾 ) |
| 22 |
21
|
biimpi |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → 𝑣 ∈ 𝐾 ) |
| 23 |
6
|
fveq2i |
⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 〈 𝐾 , 𝑃 〉 ) |
| 24 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
| 25 |
24
|
difexi |
⊢ ( 𝑉 ∖ { 𝑁 } ) ∈ V |
| 26 |
3 25
|
eqeltri |
⊢ 𝐾 ∈ V |
| 27 |
2
|
fvexi |
⊢ 𝐸 ∈ V |
| 28 |
27
|
resex |
⊢ ( 𝐸 ↾ 𝐼 ) ∈ V |
| 29 |
5 28
|
eqeltri |
⊢ 𝑃 ∈ V |
| 30 |
26 29
|
opvtxfvi |
⊢ ( Vtx ‘ 〈 𝐾 , 𝑃 〉 ) = 𝐾 |
| 31 |
23 30
|
eqtr2i |
⊢ 𝐾 = ( Vtx ‘ 𝑆 ) |
| 32 |
1 2 3 4 5 6
|
vtxdginducedm1lem1 |
⊢ ( iEdg ‘ 𝑆 ) = 𝑃 |
| 33 |
32
|
eqcomi |
⊢ 𝑃 = ( iEdg ‘ 𝑆 ) |
| 34 |
|
eqid |
⊢ dom 𝑃 = dom 𝑃 |
| 35 |
31 33 34
|
vtxdgfisnn0 |
⊢ ( ( dom 𝑃 ∈ Fin ∧ 𝑣 ∈ 𝐾 ) → ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) ∈ ℕ0 ) |
| 36 |
35
|
nn0cnd |
⊢ ( ( dom 𝑃 ∈ Fin ∧ 𝑣 ∈ 𝐾 ) → ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) ∈ ℂ ) |
| 37 |
19 22 36
|
syl2an |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) ∈ ℂ ) |
| 38 |
|
dmfi |
⊢ ( 𝐸 ∈ Fin → dom 𝐸 ∈ Fin ) |
| 39 |
|
rabfi |
⊢ ( dom 𝐸 ∈ Fin → { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ∈ Fin ) |
| 40 |
38 39
|
syl |
⊢ ( 𝐸 ∈ Fin → { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ∈ Fin ) |
| 41 |
7 40
|
eqeltrid |
⊢ ( 𝐸 ∈ Fin → 𝐽 ∈ Fin ) |
| 42 |
|
rabfi |
⊢ ( 𝐽 ∈ Fin → { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ∈ Fin ) |
| 43 |
|
hashcl |
⊢ ( { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ∈ Fin → ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℕ0 ) |
| 44 |
41 42 43
|
3syl |
⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℕ0 ) |
| 45 |
44
|
nn0cnd |
⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℂ ) |
| 46 |
45
|
ad2antll |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℂ ) |
| 47 |
46
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℂ ) |
| 48 |
13 37 47
|
fsumadd |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) = ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
| 49 |
10 48
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
| 50 |
3
|
sumeq1i |
⊢ Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) |
| 51 |
50
|
eqeq1i |
⊢ ( Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ↔ Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ) |
| 52 |
|
oveq1 |
⊢ ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) = ( ( 2 · ( ♯ ‘ 𝑃 ) ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
| 53 |
51 52
|
sylbi |
⊢ ( Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) = ( ( 2 · ( ♯ ‘ 𝑃 ) ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
| 54 |
49 53
|
sylan9eq |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ) → Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( 2 · ( ♯ ‘ 𝑃 ) ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
| 55 |
54
|
oveq1d |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( ( ( 2 · ( ♯ ‘ 𝑃 ) ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) ) |
| 56 |
45
|
adantl |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℂ ) |
| 57 |
56
|
adantr |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℂ ) |
| 58 |
12 57
|
fsumcl |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℂ ) |
| 59 |
|
hashcl |
⊢ ( 𝐽 ∈ Fin → ( ♯ ‘ 𝐽 ) ∈ ℕ0 ) |
| 60 |
41 59
|
syl |
⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ 𝐽 ) ∈ ℕ0 ) |
| 61 |
60
|
nn0cnd |
⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ 𝐽 ) ∈ ℂ ) |
| 62 |
61
|
adantl |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → ( ♯ ‘ 𝐽 ) ∈ ℂ ) |
| 63 |
|
rabfi |
⊢ ( dom 𝐸 ∈ Fin → { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ∈ Fin ) |
| 64 |
|
hashcl |
⊢ ( { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ∈ Fin → ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ∈ ℕ0 ) |
| 65 |
38 63 64
|
3syl |
⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ∈ ℕ0 ) |
| 66 |
65
|
nn0cnd |
⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ∈ ℂ ) |
| 67 |
66
|
adantl |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ∈ ℂ ) |
| 68 |
58 62 67
|
add12d |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( ( ♯ ‘ 𝐽 ) + ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) ) |
| 69 |
68
|
adantl |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( ( ♯ ‘ 𝐽 ) + ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) ) |
| 70 |
1 2 3 4 5 6 7
|
finsumvtxdg2ssteplem3 |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) = ( ♯ ‘ 𝐽 ) ) |
| 71 |
70
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ( ♯ ‘ 𝐽 ) + ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ 𝐽 ) ) ) |
| 72 |
61
|
2timesd |
⊢ ( 𝐸 ∈ Fin → ( 2 · ( ♯ ‘ 𝐽 ) ) = ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ 𝐽 ) ) ) |
| 73 |
72
|
eqcomd |
⊢ ( 𝐸 ∈ Fin → ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ 𝐽 ) ) = ( 2 · ( ♯ ‘ 𝐽 ) ) ) |
| 74 |
73
|
ad2antll |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ 𝐽 ) ) = ( 2 · ( ♯ ‘ 𝐽 ) ) ) |
| 75 |
69 71 74
|
3eqtrd |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( 2 · ( ♯ ‘ 𝐽 ) ) ) |
| 76 |
75
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ( 2 · ( ♯ ‘ 𝑃 ) ) + ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) ) = ( ( 2 · ( ♯ ‘ 𝑃 ) ) + ( 2 · ( ♯ ‘ 𝐽 ) ) ) ) |
| 77 |
|
2cnd |
⊢ ( 𝐸 ∈ Fin → 2 ∈ ℂ ) |
| 78 |
5 15
|
eqeltrid |
⊢ ( 𝐸 ∈ Fin → 𝑃 ∈ Fin ) |
| 79 |
|
hashcl |
⊢ ( 𝑃 ∈ Fin → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) |
| 80 |
78 79
|
syl |
⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) |
| 81 |
80
|
nn0cnd |
⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ 𝑃 ) ∈ ℂ ) |
| 82 |
77 81
|
mulcld |
⊢ ( 𝐸 ∈ Fin → ( 2 · ( ♯ ‘ 𝑃 ) ) ∈ ℂ ) |
| 83 |
82
|
ad2antll |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( 2 · ( ♯ ‘ 𝑃 ) ) ∈ ℂ ) |
| 84 |
58
|
adantl |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℂ ) |
| 85 |
61 66
|
addcld |
⊢ ( 𝐸 ∈ Fin → ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ∈ ℂ ) |
| 86 |
85
|
ad2antll |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ∈ ℂ ) |
| 87 |
83 84 86
|
addassd |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ( ( 2 · ( ♯ ‘ 𝑃 ) ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( ( 2 · ( ♯ ‘ 𝑃 ) ) + ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) ) ) |
| 88 |
|
2cnd |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → 2 ∈ ℂ ) |
| 89 |
81
|
ad2antll |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ♯ ‘ 𝑃 ) ∈ ℂ ) |
| 90 |
61
|
ad2antll |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ♯ ‘ 𝐽 ) ∈ ℂ ) |
| 91 |
88 89 90
|
adddid |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( 2 · ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ 𝐽 ) ) ) = ( ( 2 · ( ♯ ‘ 𝑃 ) ) + ( 2 · ( ♯ ‘ 𝐽 ) ) ) ) |
| 92 |
76 87 91
|
3eqtr4d |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ( ( 2 · ( ♯ ‘ 𝑃 ) ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( 2 · ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ 𝐽 ) ) ) ) |
| 93 |
92
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ) → ( ( ( 2 · ( ♯ ‘ 𝑃 ) ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( 2 · ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ 𝐽 ) ) ) ) |
| 94 |
55 93
|
eqtrd |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( 2 · ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ 𝐽 ) ) ) ) |