Step |
Hyp |
Ref |
Expression |
1 |
|
finsumvtxdg2sstep.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
finsumvtxdg2sstep.e |
⊢ 𝐸 = ( iEdg ‘ 𝐺 ) |
3 |
|
finsumvtxdg2sstep.k |
⊢ 𝐾 = ( 𝑉 ∖ { 𝑁 } ) |
4 |
|
finsumvtxdg2sstep.i |
⊢ 𝐼 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∉ ( 𝐸 ‘ 𝑖 ) } |
5 |
|
finsumvtxdg2sstep.p |
⊢ 𝑃 = ( 𝐸 ↾ 𝐼 ) |
6 |
|
finsumvtxdg2sstep.s |
⊢ 𝑆 = 〈 𝐾 , 𝑃 〉 |
7 |
|
finsumvtxdg2ssteplem.j |
⊢ 𝐽 = { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } |
8 |
1 2 3 4 5 6 7
|
vtxdginducedm1fi |
⊢ ( 𝐸 ∈ Fin → ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
9 |
8
|
ad2antll |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ∀ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
10 |
9
|
sumeq2d |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
11 |
|
diffi |
⊢ ( 𝑉 ∈ Fin → ( 𝑉 ∖ { 𝑁 } ) ∈ Fin ) |
12 |
11
|
adantr |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → ( 𝑉 ∖ { 𝑁 } ) ∈ Fin ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( 𝑉 ∖ { 𝑁 } ) ∈ Fin ) |
14 |
5
|
dmeqi |
⊢ dom 𝑃 = dom ( 𝐸 ↾ 𝐼 ) |
15 |
|
finresfin |
⊢ ( 𝐸 ∈ Fin → ( 𝐸 ↾ 𝐼 ) ∈ Fin ) |
16 |
|
dmfi |
⊢ ( ( 𝐸 ↾ 𝐼 ) ∈ Fin → dom ( 𝐸 ↾ 𝐼 ) ∈ Fin ) |
17 |
15 16
|
syl |
⊢ ( 𝐸 ∈ Fin → dom ( 𝐸 ↾ 𝐼 ) ∈ Fin ) |
18 |
14 17
|
eqeltrid |
⊢ ( 𝐸 ∈ Fin → dom 𝑃 ∈ Fin ) |
19 |
18
|
ad2antll |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → dom 𝑃 ∈ Fin ) |
20 |
3
|
eqcomi |
⊢ ( 𝑉 ∖ { 𝑁 } ) = 𝐾 |
21 |
20
|
eleq2i |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ↔ 𝑣 ∈ 𝐾 ) |
22 |
21
|
biimpi |
⊢ ( 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) → 𝑣 ∈ 𝐾 ) |
23 |
6
|
fveq2i |
⊢ ( Vtx ‘ 𝑆 ) = ( Vtx ‘ 〈 𝐾 , 𝑃 〉 ) |
24 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
25 |
24
|
difexi |
⊢ ( 𝑉 ∖ { 𝑁 } ) ∈ V |
26 |
3 25
|
eqeltri |
⊢ 𝐾 ∈ V |
27 |
2
|
fvexi |
⊢ 𝐸 ∈ V |
28 |
27
|
resex |
⊢ ( 𝐸 ↾ 𝐼 ) ∈ V |
29 |
5 28
|
eqeltri |
⊢ 𝑃 ∈ V |
30 |
26 29
|
opvtxfvi |
⊢ ( Vtx ‘ 〈 𝐾 , 𝑃 〉 ) = 𝐾 |
31 |
23 30
|
eqtr2i |
⊢ 𝐾 = ( Vtx ‘ 𝑆 ) |
32 |
1 2 3 4 5 6
|
vtxdginducedm1lem1 |
⊢ ( iEdg ‘ 𝑆 ) = 𝑃 |
33 |
32
|
eqcomi |
⊢ 𝑃 = ( iEdg ‘ 𝑆 ) |
34 |
|
eqid |
⊢ dom 𝑃 = dom 𝑃 |
35 |
31 33 34
|
vtxdgfisnn0 |
⊢ ( ( dom 𝑃 ∈ Fin ∧ 𝑣 ∈ 𝐾 ) → ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) ∈ ℕ0 ) |
36 |
35
|
nn0cnd |
⊢ ( ( dom 𝑃 ∈ Fin ∧ 𝑣 ∈ 𝐾 ) → ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) ∈ ℂ ) |
37 |
19 22 36
|
syl2an |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) ∈ ℂ ) |
38 |
|
dmfi |
⊢ ( 𝐸 ∈ Fin → dom 𝐸 ∈ Fin ) |
39 |
|
rabfi |
⊢ ( dom 𝐸 ∈ Fin → { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ∈ Fin ) |
40 |
38 39
|
syl |
⊢ ( 𝐸 ∈ Fin → { 𝑖 ∈ dom 𝐸 ∣ 𝑁 ∈ ( 𝐸 ‘ 𝑖 ) } ∈ Fin ) |
41 |
7 40
|
eqeltrid |
⊢ ( 𝐸 ∈ Fin → 𝐽 ∈ Fin ) |
42 |
|
rabfi |
⊢ ( 𝐽 ∈ Fin → { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ∈ Fin ) |
43 |
|
hashcl |
⊢ ( { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ∈ Fin → ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℕ0 ) |
44 |
41 42 43
|
3syl |
⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℕ0 ) |
45 |
44
|
nn0cnd |
⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℂ ) |
46 |
45
|
ad2antll |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℂ ) |
47 |
46
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℂ ) |
48 |
13 37 47
|
fsumadd |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) = ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
49 |
10 48
|
eqtrd |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
50 |
3
|
sumeq1i |
⊢ Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) |
51 |
50
|
eqeq1i |
⊢ ( Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ↔ Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ) |
52 |
|
oveq1 |
⊢ ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) = ( ( 2 · ( ♯ ‘ 𝑃 ) ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
53 |
51 52
|
sylbi |
⊢ ( Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) = ( ( 2 · ( ♯ ‘ 𝑃 ) ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
54 |
49 53
|
sylan9eq |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ) → Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) = ( ( 2 · ( ♯ ‘ 𝑃 ) ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) ) |
55 |
54
|
oveq1d |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( ( ( 2 · ( ♯ ‘ 𝑃 ) ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) ) |
56 |
45
|
adantl |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℂ ) |
57 |
56
|
adantr |
⊢ ( ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ∧ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ) → ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℂ ) |
58 |
12 57
|
fsumcl |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℂ ) |
59 |
|
hashcl |
⊢ ( 𝐽 ∈ Fin → ( ♯ ‘ 𝐽 ) ∈ ℕ0 ) |
60 |
41 59
|
syl |
⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ 𝐽 ) ∈ ℕ0 ) |
61 |
60
|
nn0cnd |
⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ 𝐽 ) ∈ ℂ ) |
62 |
61
|
adantl |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → ( ♯ ‘ 𝐽 ) ∈ ℂ ) |
63 |
|
rabfi |
⊢ ( dom 𝐸 ∈ Fin → { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ∈ Fin ) |
64 |
|
hashcl |
⊢ ( { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ∈ Fin → ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ∈ ℕ0 ) |
65 |
38 63 64
|
3syl |
⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ∈ ℕ0 ) |
66 |
65
|
nn0cnd |
⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ∈ ℂ ) |
67 |
66
|
adantl |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ∈ ℂ ) |
68 |
58 62 67
|
add12d |
⊢ ( ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( ( ♯ ‘ 𝐽 ) + ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) ) |
69 |
68
|
adantl |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( ( ♯ ‘ 𝐽 ) + ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) ) |
70 |
1 2 3 4 5 6 7
|
finsumvtxdg2ssteplem3 |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) = ( ♯ ‘ 𝐽 ) ) |
71 |
70
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ( ♯ ‘ 𝐽 ) + ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ 𝐽 ) ) ) |
72 |
61
|
2timesd |
⊢ ( 𝐸 ∈ Fin → ( 2 · ( ♯ ‘ 𝐽 ) ) = ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ 𝐽 ) ) ) |
73 |
72
|
eqcomd |
⊢ ( 𝐸 ∈ Fin → ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ 𝐽 ) ) = ( 2 · ( ♯ ‘ 𝐽 ) ) ) |
74 |
73
|
ad2antll |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ 𝐽 ) ) = ( 2 · ( ♯ ‘ 𝐽 ) ) ) |
75 |
69 71 74
|
3eqtrd |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( 2 · ( ♯ ‘ 𝐽 ) ) ) |
76 |
75
|
oveq2d |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ( 2 · ( ♯ ‘ 𝑃 ) ) + ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) ) = ( ( 2 · ( ♯ ‘ 𝑃 ) ) + ( 2 · ( ♯ ‘ 𝐽 ) ) ) ) |
77 |
|
2cnd |
⊢ ( 𝐸 ∈ Fin → 2 ∈ ℂ ) |
78 |
5 15
|
eqeltrid |
⊢ ( 𝐸 ∈ Fin → 𝑃 ∈ Fin ) |
79 |
|
hashcl |
⊢ ( 𝑃 ∈ Fin → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) |
80 |
78 79
|
syl |
⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ 𝑃 ) ∈ ℕ0 ) |
81 |
80
|
nn0cnd |
⊢ ( 𝐸 ∈ Fin → ( ♯ ‘ 𝑃 ) ∈ ℂ ) |
82 |
77 81
|
mulcld |
⊢ ( 𝐸 ∈ Fin → ( 2 · ( ♯ ‘ 𝑃 ) ) ∈ ℂ ) |
83 |
82
|
ad2antll |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( 2 · ( ♯ ‘ 𝑃 ) ) ∈ ℂ ) |
84 |
58
|
adantl |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ∈ ℂ ) |
85 |
61 66
|
addcld |
⊢ ( 𝐸 ∈ Fin → ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ∈ ℂ ) |
86 |
85
|
ad2antll |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ∈ ℂ ) |
87 |
83 84 86
|
addassd |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ( ( 2 · ( ♯ ‘ 𝑃 ) ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( ( 2 · ( ♯ ‘ 𝑃 ) ) + ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) ) ) |
88 |
|
2cnd |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → 2 ∈ ℂ ) |
89 |
81
|
ad2antll |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ♯ ‘ 𝑃 ) ∈ ℂ ) |
90 |
61
|
ad2antll |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ♯ ‘ 𝐽 ) ∈ ℂ ) |
91 |
88 89 90
|
adddid |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( 2 · ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ 𝐽 ) ) ) = ( ( 2 · ( ♯ ‘ 𝑃 ) ) + ( 2 · ( ♯ ‘ 𝐽 ) ) ) ) |
92 |
76 87 91
|
3eqtr4d |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) → ( ( ( 2 · ( ♯ ‘ 𝑃 ) ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( 2 · ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ 𝐽 ) ) ) ) |
93 |
92
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ) → ( ( ( 2 · ( ♯ ‘ 𝑃 ) ) + Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ♯ ‘ { 𝑖 ∈ 𝐽 ∣ 𝑣 ∈ ( 𝐸 ‘ 𝑖 ) } ) ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( 2 · ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ 𝐽 ) ) ) ) |
94 |
55 93
|
eqtrd |
⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ ( 𝑉 ∈ Fin ∧ 𝐸 ∈ Fin ) ) ∧ Σ 𝑣 ∈ 𝐾 ( ( VtxDeg ‘ 𝑆 ) ‘ 𝑣 ) = ( 2 · ( ♯ ‘ 𝑃 ) ) ) → ( Σ 𝑣 ∈ ( 𝑉 ∖ { 𝑁 } ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) + ( ( ♯ ‘ 𝐽 ) + ( ♯ ‘ { 𝑖 ∈ dom 𝐸 ∣ ( 𝐸 ‘ 𝑖 ) = { 𝑁 } } ) ) ) = ( 2 · ( ( ♯ ‘ 𝑃 ) + ( ♯ ‘ 𝐽 ) ) ) ) |