Step |
Hyp |
Ref |
Expression |
1 |
|
fiphp3d.a |
⊢ ( 𝜑 → 𝐴 ≈ ℕ ) |
2 |
|
fiphp3d.b |
⊢ ( 𝜑 → 𝐵 ∈ Fin ) |
3 |
|
fiphp3d.c |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐷 ∈ 𝐵 ) |
4 |
|
ominf |
⊢ ¬ ω ∈ Fin |
5 |
|
iunrab |
⊢ ∪ 𝑦 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } = { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ 𝐵 𝐷 = 𝑦 } |
6 |
|
risset |
⊢ ( 𝐷 ∈ 𝐵 ↔ ∃ 𝑦 ∈ 𝐵 𝑦 = 𝐷 ) |
7 |
|
eqcom |
⊢ ( 𝑦 = 𝐷 ↔ 𝐷 = 𝑦 ) |
8 |
7
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝑦 = 𝐷 ↔ ∃ 𝑦 ∈ 𝐵 𝐷 = 𝑦 ) |
9 |
6 8
|
bitri |
⊢ ( 𝐷 ∈ 𝐵 ↔ ∃ 𝑦 ∈ 𝐵 𝐷 = 𝑦 ) |
10 |
3 9
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ∃ 𝑦 ∈ 𝐵 𝐷 = 𝑦 ) |
11 |
10
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐷 = 𝑦 ) |
12 |
|
rabid2 |
⊢ ( 𝐴 = { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ 𝐵 𝐷 = 𝑦 } ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝐷 = 𝑦 ) |
13 |
11 12
|
sylibr |
⊢ ( 𝜑 → 𝐴 = { 𝑥 ∈ 𝐴 ∣ ∃ 𝑦 ∈ 𝐵 𝐷 = 𝑦 } ) |
14 |
5 13
|
eqtr4id |
⊢ ( 𝜑 → ∪ 𝑦 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } = 𝐴 ) |
15 |
14
|
eleq1d |
⊢ ( 𝜑 → ( ∪ 𝑦 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ∈ Fin ↔ 𝐴 ∈ Fin ) ) |
16 |
|
nnenom |
⊢ ℕ ≈ ω |
17 |
|
entr |
⊢ ( ( 𝐴 ≈ ℕ ∧ ℕ ≈ ω ) → 𝐴 ≈ ω ) |
18 |
1 16 17
|
sylancl |
⊢ ( 𝜑 → 𝐴 ≈ ω ) |
19 |
|
enfi |
⊢ ( 𝐴 ≈ ω → ( 𝐴 ∈ Fin ↔ ω ∈ Fin ) ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ Fin ↔ ω ∈ Fin ) ) |
21 |
15 20
|
bitrd |
⊢ ( 𝜑 → ( ∪ 𝑦 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ∈ Fin ↔ ω ∈ Fin ) ) |
22 |
4 21
|
mtbiri |
⊢ ( 𝜑 → ¬ ∪ 𝑦 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ∈ Fin ) |
23 |
|
iunfi |
⊢ ( ( 𝐵 ∈ Fin ∧ ∀ 𝑦 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ∈ Fin ) → ∪ 𝑦 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ∈ Fin ) |
24 |
2 23
|
sylan |
⊢ ( ( 𝜑 ∧ ∀ 𝑦 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ∈ Fin ) → ∪ 𝑦 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ∈ Fin ) |
25 |
22 24
|
mtand |
⊢ ( 𝜑 → ¬ ∀ 𝑦 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ∈ Fin ) |
26 |
|
rexnal |
⊢ ( ∃ 𝑦 ∈ 𝐵 ¬ { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ∈ Fin ↔ ¬ ∀ 𝑦 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ∈ Fin ) |
27 |
25 26
|
sylibr |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝐵 ¬ { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ∈ Fin ) |
28 |
18 16
|
jctir |
⊢ ( 𝜑 → ( 𝐴 ≈ ω ∧ ℕ ≈ ω ) ) |
29 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ⊆ 𝐴 |
30 |
29
|
jctl |
⊢ ( ¬ { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ∈ Fin → ( { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ⊆ 𝐴 ∧ ¬ { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ∈ Fin ) ) |
31 |
|
ctbnfien |
⊢ ( ( ( 𝐴 ≈ ω ∧ ℕ ≈ ω ) ∧ ( { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ⊆ 𝐴 ∧ ¬ { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ∈ Fin ) ) → { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ≈ ℕ ) |
32 |
28 30 31
|
syl2an |
⊢ ( ( 𝜑 ∧ ¬ { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ∈ Fin ) → { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ≈ ℕ ) |
33 |
32
|
ex |
⊢ ( 𝜑 → ( ¬ { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ∈ Fin → { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ≈ ℕ ) ) |
34 |
33
|
reximdv |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ 𝐵 ¬ { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ∈ Fin → ∃ 𝑦 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ≈ ℕ ) ) |
35 |
27 34
|
mpd |
⊢ ( 𝜑 → ∃ 𝑦 ∈ 𝐵 { 𝑥 ∈ 𝐴 ∣ 𝐷 = 𝑦 } ≈ ℕ ) |