Metamath Proof Explorer


Theorem fiprc

Description: The class of finite sets is a proper class. (Contributed by Jeff Hankins, 3-Oct-2008)

Ref Expression
Assertion fiprc Fin ∉ V

Proof

Step Hyp Ref Expression
1 snnex { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∉ V
2 snfi { 𝑦 } ∈ Fin
3 eleq1 ( 𝑥 = { 𝑦 } → ( 𝑥 ∈ Fin ↔ { 𝑦 } ∈ Fin ) )
4 2 3 mpbiri ( 𝑥 = { 𝑦 } → 𝑥 ∈ Fin )
5 4 exlimiv ( ∃ 𝑦 𝑥 = { 𝑦 } → 𝑥 ∈ Fin )
6 5 abssi { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ⊆ Fin
7 ssexg ( ( { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ⊆ Fin ∧ Fin ∈ V ) → { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∈ V )
8 6 7 mpan ( Fin ∈ V → { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∈ V )
9 8 con3i ( ¬ { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∈ V → ¬ Fin ∈ V )
10 df-nel ( { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∉ V ↔ ¬ { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∈ V )
11 df-nel ( Fin ∉ V ↔ ¬ Fin ∈ V )
12 9 10 11 3imtr4i ( { 𝑥 ∣ ∃ 𝑦 𝑥 = { 𝑦 } } ∉ V → Fin ∉ V )
13 1 12 ax-mp Fin ∉ V