| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fiuni |
⊢ ( 𝐴 ∈ V → ∪ 𝐴 = ∪ ( fi ‘ 𝐴 ) ) |
| 2 |
1
|
sseq1d |
⊢ ( 𝐴 ∈ V → ( ∪ 𝐴 ⊆ 𝑋 ↔ ∪ ( fi ‘ 𝐴 ) ⊆ 𝑋 ) ) |
| 3 |
|
sspwuni |
⊢ ( 𝐴 ⊆ 𝒫 𝑋 ↔ ∪ 𝐴 ⊆ 𝑋 ) |
| 4 |
|
sspwuni |
⊢ ( ( fi ‘ 𝐴 ) ⊆ 𝒫 𝑋 ↔ ∪ ( fi ‘ 𝐴 ) ⊆ 𝑋 ) |
| 5 |
2 3 4
|
3bitr4g |
⊢ ( 𝐴 ∈ V → ( 𝐴 ⊆ 𝒫 𝑋 ↔ ( fi ‘ 𝐴 ) ⊆ 𝒫 𝑋 ) ) |
| 6 |
5
|
biimpa |
⊢ ( ( 𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 𝑋 ) → ( fi ‘ 𝐴 ) ⊆ 𝒫 𝑋 ) |
| 7 |
|
fvprc |
⊢ ( ¬ 𝐴 ∈ V → ( fi ‘ 𝐴 ) = ∅ ) |
| 8 |
|
0ss |
⊢ ∅ ⊆ 𝒫 𝑋 |
| 9 |
7 8
|
eqsstrdi |
⊢ ( ¬ 𝐴 ∈ V → ( fi ‘ 𝐴 ) ⊆ 𝒫 𝑋 ) |
| 10 |
9
|
adantr |
⊢ ( ( ¬ 𝐴 ∈ V ∧ 𝐴 ⊆ 𝒫 𝑋 ) → ( fi ‘ 𝐴 ) ⊆ 𝒫 𝑋 ) |
| 11 |
6 10
|
pm2.61ian |
⊢ ( 𝐴 ⊆ 𝒫 𝑋 → ( fi ‘ 𝐴 ) ⊆ 𝒫 𝑋 ) |