| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fislw.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
| 2 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) ) → 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) ) |
| 3 |
|
slwsubg |
⊢ ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 4 |
2 3
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 5 |
|
simpl2 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) ) → 𝑋 ∈ Fin ) |
| 6 |
1 5 2
|
slwhash |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) ) → ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |
| 7 |
4 6
|
jca |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) ) → ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) |
| 8 |
|
simpl3 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → 𝑃 ∈ ℙ ) |
| 9 |
|
simprl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 10 |
|
simpl2 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → 𝑋 ∈ Fin ) |
| 11 |
10
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → 𝑋 ∈ Fin ) |
| 12 |
|
simprl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ) |
| 13 |
1
|
subgss |
⊢ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) → 𝑘 ⊆ 𝑋 ) |
| 14 |
12 13
|
syl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → 𝑘 ⊆ 𝑋 ) |
| 15 |
11 14
|
ssfid |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → 𝑘 ∈ Fin ) |
| 16 |
|
simprrl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → 𝐻 ⊆ 𝑘 ) |
| 17 |
|
ssdomg |
⊢ ( 𝑘 ∈ Fin → ( 𝐻 ⊆ 𝑘 → 𝐻 ≼ 𝑘 ) ) |
| 18 |
15 16 17
|
sylc |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → 𝐻 ≼ 𝑘 ) |
| 19 |
|
simprrr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) |
| 20 |
|
eqid |
⊢ ( 𝐺 ↾s 𝑘 ) = ( 𝐺 ↾s 𝑘 ) |
| 21 |
20
|
subggrp |
⊢ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ↾s 𝑘 ) ∈ Grp ) |
| 22 |
12 21
|
syl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( 𝐺 ↾s 𝑘 ) ∈ Grp ) |
| 23 |
20
|
subgbas |
⊢ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) → 𝑘 = ( Base ‘ ( 𝐺 ↾s 𝑘 ) ) ) |
| 24 |
12 23
|
syl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → 𝑘 = ( Base ‘ ( 𝐺 ↾s 𝑘 ) ) ) |
| 25 |
24 15
|
eqeltrrd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( Base ‘ ( 𝐺 ↾s 𝑘 ) ) ∈ Fin ) |
| 26 |
|
eqid |
⊢ ( Base ‘ ( 𝐺 ↾s 𝑘 ) ) = ( Base ‘ ( 𝐺 ↾s 𝑘 ) ) |
| 27 |
26
|
pgpfi |
⊢ ( ( ( 𝐺 ↾s 𝑘 ) ∈ Grp ∧ ( Base ‘ ( 𝐺 ↾s 𝑘 ) ) ∈ Fin ) → ( 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ↔ ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝑘 ) ) ) = ( 𝑃 ↑ 𝑛 ) ) ) ) |
| 28 |
22 25 27
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ↔ ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝑘 ) ) ) = ( 𝑃 ↑ 𝑛 ) ) ) ) |
| 29 |
19 28
|
mpbid |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝑘 ) ) ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 30 |
29
|
simpld |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → 𝑃 ∈ ℙ ) |
| 31 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 32 |
30 31
|
syl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → 𝑃 ∈ ℕ ) |
| 33 |
32
|
nnred |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → 𝑃 ∈ ℝ ) |
| 34 |
32
|
nnge1d |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → 1 ≤ 𝑃 ) |
| 35 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 36 |
35
|
subg0cl |
⊢ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) → ( 0g ‘ 𝐺 ) ∈ 𝑘 ) |
| 37 |
12 36
|
syl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( 0g ‘ 𝐺 ) ∈ 𝑘 ) |
| 38 |
37
|
ne0d |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → 𝑘 ≠ ∅ ) |
| 39 |
|
hashnncl |
⊢ ( 𝑘 ∈ Fin → ( ( ♯ ‘ 𝑘 ) ∈ ℕ ↔ 𝑘 ≠ ∅ ) ) |
| 40 |
15 39
|
syl |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( ( ♯ ‘ 𝑘 ) ∈ ℕ ↔ 𝑘 ≠ ∅ ) ) |
| 41 |
38 40
|
mpbird |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( ♯ ‘ 𝑘 ) ∈ ℕ ) |
| 42 |
30 41
|
pccld |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑘 ) ) ∈ ℕ0 ) |
| 43 |
42
|
nn0zd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑘 ) ) ∈ ℤ ) |
| 44 |
|
simpl1 |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → 𝐺 ∈ Grp ) |
| 45 |
1
|
grpbn0 |
⊢ ( 𝐺 ∈ Grp → 𝑋 ≠ ∅ ) |
| 46 |
44 45
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → 𝑋 ≠ ∅ ) |
| 47 |
|
hashnncl |
⊢ ( 𝑋 ∈ Fin → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
| 48 |
10 47
|
syl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → ( ( ♯ ‘ 𝑋 ) ∈ ℕ ↔ 𝑋 ≠ ∅ ) ) |
| 49 |
46 48
|
mpbird |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → ( ♯ ‘ 𝑋 ) ∈ ℕ ) |
| 50 |
8 49
|
pccld |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℕ0 ) |
| 51 |
50
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℕ0 ) |
| 52 |
51
|
nn0zd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℤ ) |
| 53 |
|
oveq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 pCnt ( ♯ ‘ 𝑘 ) ) = ( 𝑃 pCnt ( ♯ ‘ 𝑘 ) ) ) |
| 54 |
|
oveq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) = ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) |
| 55 |
53 54
|
breq12d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 pCnt ( ♯ ‘ 𝑘 ) ) ≤ ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) ↔ ( 𝑃 pCnt ( ♯ ‘ 𝑘 ) ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |
| 56 |
1
|
lagsubg |
⊢ ( ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑋 ∈ Fin ) → ( ♯ ‘ 𝑘 ) ∥ ( ♯ ‘ 𝑋 ) ) |
| 57 |
12 11 56
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( ♯ ‘ 𝑘 ) ∥ ( ♯ ‘ 𝑋 ) ) |
| 58 |
41
|
nnzd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( ♯ ‘ 𝑘 ) ∈ ℤ ) |
| 59 |
49
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( ♯ ‘ 𝑋 ) ∈ ℕ ) |
| 60 |
59
|
nnzd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( ♯ ‘ 𝑋 ) ∈ ℤ ) |
| 61 |
|
pc2dvds |
⊢ ( ( ( ♯ ‘ 𝑘 ) ∈ ℤ ∧ ( ♯ ‘ 𝑋 ) ∈ ℤ ) → ( ( ♯ ‘ 𝑘 ) ∥ ( ♯ ‘ 𝑋 ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ♯ ‘ 𝑘 ) ) ≤ ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |
| 62 |
58 60 61
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( ( ♯ ‘ 𝑘 ) ∥ ( ♯ ‘ 𝑋 ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ♯ ‘ 𝑘 ) ) ≤ ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |
| 63 |
57 62
|
mpbid |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt ( ♯ ‘ 𝑘 ) ) ≤ ( 𝑝 pCnt ( ♯ ‘ 𝑋 ) ) ) |
| 64 |
55 63 30
|
rspcdva |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑘 ) ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) |
| 65 |
|
eluz2 |
⊢ ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ( ℤ≥ ‘ ( 𝑃 pCnt ( ♯ ‘ 𝑘 ) ) ) ↔ ( ( 𝑃 pCnt ( ♯ ‘ 𝑘 ) ) ∈ ℤ ∧ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℤ ∧ ( 𝑃 pCnt ( ♯ ‘ 𝑘 ) ) ≤ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |
| 66 |
43 52 64 65
|
syl3anbrc |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ( ℤ≥ ‘ ( 𝑃 pCnt ( ♯ ‘ 𝑘 ) ) ) ) |
| 67 |
33 34 66
|
leexp2ad |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑘 ) ) ) ≤ ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |
| 68 |
29
|
simprd |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝑘 ) ) ) = ( 𝑃 ↑ 𝑛 ) ) |
| 69 |
24
|
fveqeq2d |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ 𝑛 ) ↔ ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝑘 ) ) ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 70 |
69
|
rexbidv |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ 𝑛 ) ↔ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝑘 ) ) ) = ( 𝑃 ↑ 𝑛 ) ) ) |
| 71 |
68 70
|
mpbird |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ 𝑛 ) ) |
| 72 |
|
pcprmpw |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ♯ ‘ 𝑘 ) ∈ ℕ ) → ( ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ 𝑛 ) ↔ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑘 ) ) ) ) ) |
| 73 |
30 41 72
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ 𝑛 ) ↔ ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑘 ) ) ) ) ) |
| 74 |
71 73
|
mpbid |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( ♯ ‘ 𝑘 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑘 ) ) ) ) |
| 75 |
|
simplrr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |
| 76 |
67 74 75
|
3brtr4d |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( ♯ ‘ 𝑘 ) ≤ ( ♯ ‘ 𝐻 ) ) |
| 77 |
1
|
subgss |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 ⊆ 𝑋 ) |
| 78 |
77
|
ad2antrl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → 𝐻 ⊆ 𝑋 ) |
| 79 |
10 78
|
ssfid |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → 𝐻 ∈ Fin ) |
| 80 |
79
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → 𝐻 ∈ Fin ) |
| 81 |
|
hashdom |
⊢ ( ( 𝑘 ∈ Fin ∧ 𝐻 ∈ Fin ) → ( ( ♯ ‘ 𝑘 ) ≤ ( ♯ ‘ 𝐻 ) ↔ 𝑘 ≼ 𝐻 ) ) |
| 82 |
15 80 81
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → ( ( ♯ ‘ 𝑘 ) ≤ ( ♯ ‘ 𝐻 ) ↔ 𝑘 ≼ 𝐻 ) ) |
| 83 |
76 82
|
mpbid |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → 𝑘 ≼ 𝐻 ) |
| 84 |
|
sbth |
⊢ ( ( 𝐻 ≼ 𝑘 ∧ 𝑘 ≼ 𝐻 ) → 𝐻 ≈ 𝑘 ) |
| 85 |
18 83 84
|
syl2anc |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → 𝐻 ≈ 𝑘 ) |
| 86 |
|
fisseneq |
⊢ ( ( 𝑘 ∈ Fin ∧ 𝐻 ⊆ 𝑘 ∧ 𝐻 ≈ 𝑘 ) → 𝐻 = 𝑘 ) |
| 87 |
15 16 85 86
|
syl3anc |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ ( 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) → 𝐻 = 𝑘 ) |
| 88 |
87
|
expr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) → 𝐻 = 𝑘 ) ) |
| 89 |
|
eqid |
⊢ ( 𝐺 ↾s 𝐻 ) = ( 𝐺 ↾s 𝐻 ) |
| 90 |
89
|
subgbas |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → 𝐻 = ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ) |
| 91 |
90
|
ad2antrl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → 𝐻 = ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ) |
| 92 |
91
|
fveq2d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → ( ♯ ‘ 𝐻 ) = ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ) ) |
| 93 |
|
simprr |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |
| 94 |
92 93
|
eqtr3d |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |
| 95 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) |
| 96 |
95
|
rspceeqv |
⊢ ( ( ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ∈ ℕ0 ∧ ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) → ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ) = ( 𝑃 ↑ 𝑛 ) ) |
| 97 |
50 94 96
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ) = ( 𝑃 ↑ 𝑛 ) ) |
| 98 |
89
|
subggrp |
⊢ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) → ( 𝐺 ↾s 𝐻 ) ∈ Grp ) |
| 99 |
98
|
ad2antrl |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → ( 𝐺 ↾s 𝐻 ) ∈ Grp ) |
| 100 |
91 79
|
eqeltrrd |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ∈ Fin ) |
| 101 |
|
eqid |
⊢ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) = ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) |
| 102 |
101
|
pgpfi |
⊢ ( ( ( 𝐺 ↾s 𝐻 ) ∈ Grp ∧ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ∈ Fin ) → ( 𝑃 pGrp ( 𝐺 ↾s 𝐻 ) ↔ ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ) = ( 𝑃 ↑ 𝑛 ) ) ) ) |
| 103 |
99 100 102
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → ( 𝑃 pGrp ( 𝐺 ↾s 𝐻 ) ↔ ( 𝑃 ∈ ℙ ∧ ∃ 𝑛 ∈ ℕ0 ( ♯ ‘ ( Base ‘ ( 𝐺 ↾s 𝐻 ) ) ) = ( 𝑃 ↑ 𝑛 ) ) ) ) |
| 104 |
8 97 103
|
mpbir2and |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → 𝑃 pGrp ( 𝐺 ↾s 𝐻 ) ) |
| 105 |
104
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ) → 𝑃 pGrp ( 𝐺 ↾s 𝐻 ) ) |
| 106 |
|
oveq2 |
⊢ ( 𝐻 = 𝑘 → ( 𝐺 ↾s 𝐻 ) = ( 𝐺 ↾s 𝑘 ) ) |
| 107 |
106
|
breq2d |
⊢ ( 𝐻 = 𝑘 → ( 𝑃 pGrp ( 𝐺 ↾s 𝐻 ) ↔ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) |
| 108 |
|
eqimss |
⊢ ( 𝐻 = 𝑘 → 𝐻 ⊆ 𝑘 ) |
| 109 |
108
|
biantrurd |
⊢ ( 𝐻 = 𝑘 → ( 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ↔ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) |
| 110 |
107 109
|
bitrd |
⊢ ( 𝐻 = 𝑘 → ( 𝑃 pGrp ( 𝐺 ↾s 𝐻 ) ↔ ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) |
| 111 |
105 110
|
syl5ibcom |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝐻 = 𝑘 → ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ) ) |
| 112 |
88 111
|
impbid |
⊢ ( ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ∧ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ) → ( ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ) |
| 113 |
112
|
ralrimiva |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ) |
| 114 |
|
isslw |
⊢ ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) ↔ ( 𝑃 ∈ ℙ ∧ 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( SubGrp ‘ 𝐺 ) ( ( 𝐻 ⊆ 𝑘 ∧ 𝑃 pGrp ( 𝐺 ↾s 𝑘 ) ) ↔ 𝐻 = 𝑘 ) ) ) |
| 115 |
8 9 113 114
|
syl3anbrc |
⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) ∧ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) → 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) ) |
| 116 |
7 115
|
impbida |
⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ Fin ∧ 𝑃 ∈ ℙ ) → ( 𝐻 ∈ ( 𝑃 pSyl 𝐺 ) ↔ ( 𝐻 ∈ ( SubGrp ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐻 ) = ( 𝑃 ↑ ( 𝑃 pCnt ( ♯ ‘ 𝑋 ) ) ) ) ) ) |