Step |
Hyp |
Ref |
Expression |
1 |
|
sstr2 |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐵 ⊆ 𝑦 → 𝐴 ⊆ 𝑦 ) ) |
2 |
1
|
adantl |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐵 ⊆ 𝑦 → 𝐴 ⊆ 𝑦 ) ) |
3 |
2
|
anim1d |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝐵 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) → ( 𝐴 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) ) ) |
4 |
3
|
ss2abdv |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → { 𝑦 ∣ ( 𝐵 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) } ⊆ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) } ) |
5 |
|
intss |
⊢ ( { 𝑦 ∣ ( 𝐵 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) } ⊆ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) } → ∩ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) } ⊆ ∩ { 𝑦 ∣ ( 𝐵 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) } ) |
6 |
4 5
|
syl |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → ∩ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) } ⊆ ∩ { 𝑦 ∣ ( 𝐵 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) } ) |
7 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ V ) |
8 |
7
|
ancoms |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ∈ V ) |
9 |
|
dffi2 |
⊢ ( 𝐴 ∈ V → ( fi ‘ 𝐴 ) = ∩ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) } ) |
10 |
8 9
|
syl |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → ( fi ‘ 𝐴 ) = ∩ { 𝑦 ∣ ( 𝐴 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) } ) |
11 |
|
dffi2 |
⊢ ( 𝐵 ∈ 𝑉 → ( fi ‘ 𝐵 ) = ∩ { 𝑦 ∣ ( 𝐵 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) } ) |
12 |
11
|
adantr |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → ( fi ‘ 𝐵 ) = ∩ { 𝑦 ∣ ( 𝐵 ⊆ 𝑦 ∧ ∀ 𝑥 ∈ 𝑦 ∀ 𝑧 ∈ 𝑦 ( 𝑥 ∩ 𝑧 ) ∈ 𝑦 ) } ) |
13 |
6 10 12
|
3sstr4d |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵 ) → ( fi ‘ 𝐴 ) ⊆ ( fi ‘ 𝐵 ) ) |