Metamath Proof Explorer


Theorem fisseneq

Description: A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008)

Ref Expression
Assertion fisseneq ( ( 𝐵 ∈ Fin ∧ 𝐴𝐵𝐴𝐵 ) → 𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 df-pss ( 𝐴𝐵 ↔ ( 𝐴𝐵𝐴𝐵 ) )
2 pssinf ( ( 𝐴𝐵𝐴𝐵 ) → ¬ 𝐵 ∈ Fin )
3 2 expcom ( 𝐴𝐵 → ( 𝐴𝐵 → ¬ 𝐵 ∈ Fin ) )
4 1 3 syl5bir ( 𝐴𝐵 → ( ( 𝐴𝐵𝐴𝐵 ) → ¬ 𝐵 ∈ Fin ) )
5 4 expdimp ( ( 𝐴𝐵𝐴𝐵 ) → ( 𝐴𝐵 → ¬ 𝐵 ∈ Fin ) )
6 5 necon4ad ( ( 𝐴𝐵𝐴𝐵 ) → ( 𝐵 ∈ Fin → 𝐴 = 𝐵 ) )
7 6 3impia ( ( 𝐴𝐵𝐴𝐵𝐵 ∈ Fin ) → 𝐴 = 𝐵 )
8 7 3com13 ( ( 𝐵 ∈ Fin ∧ 𝐴𝐵𝐴𝐵 ) → 𝐴 = 𝐵 )