Description: A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | fisseneq | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵 ) → 𝐴 = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pss | ⊢ ( 𝐴 ⊊ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) | |
2 | pssinf | ⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝐴 ≈ 𝐵 ) → ¬ 𝐵 ∈ Fin ) | |
3 | 2 | expcom | ⊢ ( 𝐴 ≈ 𝐵 → ( 𝐴 ⊊ 𝐵 → ¬ 𝐵 ∈ Fin ) ) |
4 | 1 3 | syl5bir | ⊢ ( 𝐴 ≈ 𝐵 → ( ( 𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵 ) → ¬ 𝐵 ∈ Fin ) ) |
5 | 4 | expdimp | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ Fin ) ) |
6 | 5 | necon4ad | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐵 ∈ Fin → 𝐴 = 𝐵 ) ) |
7 | 6 | 3impia | ⊢ ( ( 𝐴 ≈ 𝐵 ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ Fin ) → 𝐴 = 𝐵 ) |
8 | 7 | 3com13 | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵 ) → 𝐴 = 𝐵 ) |