Metamath Proof Explorer


Theorem fissn0dvds

Description: For each finite subset of the integers not containing 0 there is a positive integer which is divisible by each element of this subset. (Contributed by AV, 21-Aug-2020)

Ref Expression
Assertion fissn0dvds ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑚𝑍 𝑚𝑛 )

Proof

Step Hyp Ref Expression
1 simp1 ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → 𝑍 ⊆ ℤ )
2 simp2 ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → 𝑍 ∈ Fin )
3 eqid ( abs ‘ ∏ 𝑘𝑍 𝑘 ) = ( abs ‘ ∏ 𝑘𝑍 𝑘 )
4 simp3 ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → 0 ∉ 𝑍 )
5 1 2 3 4 absprodnn ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( abs ‘ ∏ 𝑘𝑍 𝑘 ) ∈ ℕ )
6 breq2 ( 𝑛 = ( abs ‘ ∏ 𝑘𝑍 𝑘 ) → ( 𝑚𝑛𝑚 ∥ ( abs ‘ ∏ 𝑘𝑍 𝑘 ) ) )
7 6 ralbidv ( 𝑛 = ( abs ‘ ∏ 𝑘𝑍 𝑘 ) → ( ∀ 𝑚𝑍 𝑚𝑛 ↔ ∀ 𝑚𝑍 𝑚 ∥ ( abs ‘ ∏ 𝑘𝑍 𝑘 ) ) )
8 7 adantl ( ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) ∧ 𝑛 = ( abs ‘ ∏ 𝑘𝑍 𝑘 ) ) → ( ∀ 𝑚𝑍 𝑚𝑛 ↔ ∀ 𝑚𝑍 𝑚 ∥ ( abs ‘ ∏ 𝑘𝑍 𝑘 ) ) )
9 1 2 3 absproddvds ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ∀ 𝑚𝑍 𝑚 ∥ ( abs ‘ ∏ 𝑘𝑍 𝑘 ) )
10 5 8 9 rspcedvd ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑚𝑍 𝑚𝑛 )