Metamath Proof Explorer


Theorem fissn0dvdsn0

Description: For each finite subset of the integers not containing 0 there is a positive integer which is divisible by each element of this subset. (Contributed by AV, 21-Aug-2020)

Ref Expression
Assertion fissn0dvdsn0 ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → { 𝑛 ∈ ℕ ∣ ∀ 𝑚𝑍 𝑚𝑛 } ≠ ∅ )

Proof

Step Hyp Ref Expression
1 fissn0dvds ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ∃ 𝑛 ∈ ℕ ∀ 𝑚𝑍 𝑚𝑛 )
2 rabn0 ( { 𝑛 ∈ ℕ ∣ ∀ 𝑚𝑍 𝑚𝑛 } ≠ ∅ ↔ ∃ 𝑛 ∈ ℕ ∀ 𝑚𝑍 𝑚𝑛 )
3 1 2 sylibr ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → { 𝑛 ∈ ℕ ∣ ∀ 𝑚𝑍 𝑚𝑛 } ≠ ∅ )