Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin ) → 𝐴 ∈ Fin ) |
2 |
|
dfss3 |
⊢ ( 𝐴 ⊆ ∪ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ 𝐵 ) |
3 |
|
eluni2 |
⊢ ( 𝑥 ∈ ∪ 𝐵 ↔ ∃ 𝑧 ∈ 𝐵 𝑥 ∈ 𝑧 ) |
4 |
3
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ 𝐵 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 ∈ 𝑧 ) |
5 |
2 4
|
sylbb |
⊢ ( 𝐴 ⊆ ∪ 𝐵 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 ∈ 𝑧 ) |
6 |
5
|
adantr |
⊢ ( ( 𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin ) → ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 ∈ 𝑧 ) |
7 |
|
eleq2 |
⊢ ( 𝑧 = ( 𝑓 ‘ 𝑥 ) → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
8 |
7
|
ac6sfi |
⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑧 ∈ 𝐵 𝑥 ∈ 𝑧 ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
9 |
1 6 8
|
syl2anc |
⊢ ( ( 𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin ) → ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) ) ) |
10 |
|
fimass |
⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → ( 𝑓 “ 𝐴 ) ⊆ 𝐵 ) |
11 |
|
vex |
⊢ 𝑓 ∈ V |
12 |
11
|
imaex |
⊢ ( 𝑓 “ 𝐴 ) ∈ V |
13 |
12
|
elpw |
⊢ ( ( 𝑓 “ 𝐴 ) ∈ 𝒫 𝐵 ↔ ( 𝑓 “ 𝐴 ) ⊆ 𝐵 ) |
14 |
10 13
|
sylibr |
⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → ( 𝑓 “ 𝐴 ) ∈ 𝒫 𝐵 ) |
15 |
14
|
ad2antrl |
⊢ ( ( ( 𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) ) ) → ( 𝑓 “ 𝐴 ) ∈ 𝒫 𝐵 ) |
16 |
|
ffun |
⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → Fun 𝑓 ) |
17 |
16
|
ad2antrl |
⊢ ( ( ( 𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) ) ) → Fun 𝑓 ) |
18 |
|
simplr |
⊢ ( ( ( 𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) ) ) → 𝐴 ∈ Fin ) |
19 |
|
imafi |
⊢ ( ( Fun 𝑓 ∧ 𝐴 ∈ Fin ) → ( 𝑓 “ 𝐴 ) ∈ Fin ) |
20 |
17 18 19
|
syl2anc |
⊢ ( ( ( 𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) ) ) → ( 𝑓 “ 𝐴 ) ∈ Fin ) |
21 |
15 20
|
elind |
⊢ ( ( ( 𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) ) ) → ( 𝑓 “ 𝐴 ) ∈ ( 𝒫 𝐵 ∩ Fin ) ) |
22 |
|
ffn |
⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → 𝑓 Fn 𝐴 ) |
23 |
22
|
adantr |
⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑓 Fn 𝐴 ) |
24 |
|
ssidd |
⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ⊆ 𝐴 ) |
25 |
|
simpr |
⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) |
26 |
|
fnfvima |
⊢ ( ( 𝑓 Fn 𝐴 ∧ 𝐴 ⊆ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 “ 𝐴 ) ) |
27 |
23 24 25 26
|
syl3anc |
⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 “ 𝐴 ) ) |
28 |
|
elssuni |
⊢ ( ( 𝑓 ‘ 𝑥 ) ∈ ( 𝑓 “ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ⊆ ∪ ( 𝑓 “ 𝐴 ) ) |
29 |
27 28
|
syl |
⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑓 ‘ 𝑥 ) ⊆ ∪ ( 𝑓 “ 𝐴 ) ) |
30 |
29
|
sseld |
⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) → 𝑥 ∈ ∪ ( 𝑓 “ 𝐴 ) ) ) |
31 |
30
|
ralimdva |
⊢ ( 𝑓 : 𝐴 ⟶ 𝐵 → ( ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑓 “ 𝐴 ) ) ) |
32 |
31
|
imp |
⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑓 “ 𝐴 ) ) |
33 |
|
dfss3 |
⊢ ( 𝐴 ⊆ ∪ ( 𝑓 “ 𝐴 ) ↔ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ∪ ( 𝑓 “ 𝐴 ) ) |
34 |
32 33
|
sylibr |
⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) ) → 𝐴 ⊆ ∪ ( 𝑓 “ 𝐴 ) ) |
35 |
34
|
adantl |
⊢ ( ( ( 𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) ) ) → 𝐴 ⊆ ∪ ( 𝑓 “ 𝐴 ) ) |
36 |
|
unieq |
⊢ ( 𝑐 = ( 𝑓 “ 𝐴 ) → ∪ 𝑐 = ∪ ( 𝑓 “ 𝐴 ) ) |
37 |
36
|
sseq2d |
⊢ ( 𝑐 = ( 𝑓 “ 𝐴 ) → ( 𝐴 ⊆ ∪ 𝑐 ↔ 𝐴 ⊆ ∪ ( 𝑓 “ 𝐴 ) ) ) |
38 |
37
|
rspcev |
⊢ ( ( ( 𝑓 “ 𝐴 ) ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝐴 ⊆ ∪ ( 𝑓 “ 𝐴 ) ) → ∃ 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 ⊆ ∪ 𝑐 ) |
39 |
21 35 38
|
syl2anc |
⊢ ( ( ( 𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐴 𝑥 ∈ ( 𝑓 ‘ 𝑥 ) ) ) → ∃ 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 ⊆ ∪ 𝑐 ) |
40 |
9 39
|
exlimddv |
⊢ ( ( 𝐴 ⊆ ∪ 𝐵 ∧ 𝐴 ∈ Fin ) → ∃ 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 ⊆ ∪ 𝑐 ) |