Metamath Proof Explorer


Theorem fissuni

Description: A finite subset of a union is covered by finitely many elements. (Contributed by Stefan O'Rear, 2-Apr-2015)

Ref Expression
Assertion fissuni ( ( 𝐴 𝐵𝐴 ∈ Fin ) → ∃ 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 𝑐 )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝐴 𝐵𝐴 ∈ Fin ) → 𝐴 ∈ Fin )
2 dfss3 ( 𝐴 𝐵 ↔ ∀ 𝑥𝐴 𝑥 𝐵 )
3 eluni2 ( 𝑥 𝐵 ↔ ∃ 𝑧𝐵 𝑥𝑧 )
4 3 ralbii ( ∀ 𝑥𝐴 𝑥 𝐵 ↔ ∀ 𝑥𝐴𝑧𝐵 𝑥𝑧 )
5 2 4 sylbb ( 𝐴 𝐵 → ∀ 𝑥𝐴𝑧𝐵 𝑥𝑧 )
6 5 adantr ( ( 𝐴 𝐵𝐴 ∈ Fin ) → ∀ 𝑥𝐴𝑧𝐵 𝑥𝑧 )
7 eleq2 ( 𝑧 = ( 𝑓𝑥 ) → ( 𝑥𝑧𝑥 ∈ ( 𝑓𝑥 ) ) )
8 7 ac6sfi ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥𝐴𝑧𝐵 𝑥𝑧 ) → ∃ 𝑓 ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑥𝐴 𝑥 ∈ ( 𝑓𝑥 ) ) )
9 1 6 8 syl2anc ( ( 𝐴 𝐵𝐴 ∈ Fin ) → ∃ 𝑓 ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑥𝐴 𝑥 ∈ ( 𝑓𝑥 ) ) )
10 fimass ( 𝑓 : 𝐴𝐵 → ( 𝑓𝐴 ) ⊆ 𝐵 )
11 vex 𝑓 ∈ V
12 11 imaex ( 𝑓𝐴 ) ∈ V
13 12 elpw ( ( 𝑓𝐴 ) ∈ 𝒫 𝐵 ↔ ( 𝑓𝐴 ) ⊆ 𝐵 )
14 10 13 sylibr ( 𝑓 : 𝐴𝐵 → ( 𝑓𝐴 ) ∈ 𝒫 𝐵 )
15 14 ad2antrl ( ( ( 𝐴 𝐵𝐴 ∈ Fin ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑥𝐴 𝑥 ∈ ( 𝑓𝑥 ) ) ) → ( 𝑓𝐴 ) ∈ 𝒫 𝐵 )
16 ffun ( 𝑓 : 𝐴𝐵 → Fun 𝑓 )
17 16 ad2antrl ( ( ( 𝐴 𝐵𝐴 ∈ Fin ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑥𝐴 𝑥 ∈ ( 𝑓𝑥 ) ) ) → Fun 𝑓 )
18 simplr ( ( ( 𝐴 𝐵𝐴 ∈ Fin ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑥𝐴 𝑥 ∈ ( 𝑓𝑥 ) ) ) → 𝐴 ∈ Fin )
19 imafi ( ( Fun 𝑓𝐴 ∈ Fin ) → ( 𝑓𝐴 ) ∈ Fin )
20 17 18 19 syl2anc ( ( ( 𝐴 𝐵𝐴 ∈ Fin ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑥𝐴 𝑥 ∈ ( 𝑓𝑥 ) ) ) → ( 𝑓𝐴 ) ∈ Fin )
21 15 20 elind ( ( ( 𝐴 𝐵𝐴 ∈ Fin ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑥𝐴 𝑥 ∈ ( 𝑓𝑥 ) ) ) → ( 𝑓𝐴 ) ∈ ( 𝒫 𝐵 ∩ Fin ) )
22 ffn ( 𝑓 : 𝐴𝐵𝑓 Fn 𝐴 )
23 22 adantr ( ( 𝑓 : 𝐴𝐵𝑥𝐴 ) → 𝑓 Fn 𝐴 )
24 ssidd ( ( 𝑓 : 𝐴𝐵𝑥𝐴 ) → 𝐴𝐴 )
25 simpr ( ( 𝑓 : 𝐴𝐵𝑥𝐴 ) → 𝑥𝐴 )
26 fnfvima ( ( 𝑓 Fn 𝐴𝐴𝐴𝑥𝐴 ) → ( 𝑓𝑥 ) ∈ ( 𝑓𝐴 ) )
27 23 24 25 26 syl3anc ( ( 𝑓 : 𝐴𝐵𝑥𝐴 ) → ( 𝑓𝑥 ) ∈ ( 𝑓𝐴 ) )
28 elssuni ( ( 𝑓𝑥 ) ∈ ( 𝑓𝐴 ) → ( 𝑓𝑥 ) ⊆ ( 𝑓𝐴 ) )
29 27 28 syl ( ( 𝑓 : 𝐴𝐵𝑥𝐴 ) → ( 𝑓𝑥 ) ⊆ ( 𝑓𝐴 ) )
30 29 sseld ( ( 𝑓 : 𝐴𝐵𝑥𝐴 ) → ( 𝑥 ∈ ( 𝑓𝑥 ) → 𝑥 ( 𝑓𝐴 ) ) )
31 30 ralimdva ( 𝑓 : 𝐴𝐵 → ( ∀ 𝑥𝐴 𝑥 ∈ ( 𝑓𝑥 ) → ∀ 𝑥𝐴 𝑥 ( 𝑓𝐴 ) ) )
32 31 imp ( ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑥𝐴 𝑥 ∈ ( 𝑓𝑥 ) ) → ∀ 𝑥𝐴 𝑥 ( 𝑓𝐴 ) )
33 dfss3 ( 𝐴 ( 𝑓𝐴 ) ↔ ∀ 𝑥𝐴 𝑥 ( 𝑓𝐴 ) )
34 32 33 sylibr ( ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑥𝐴 𝑥 ∈ ( 𝑓𝑥 ) ) → 𝐴 ( 𝑓𝐴 ) )
35 34 adantl ( ( ( 𝐴 𝐵𝐴 ∈ Fin ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑥𝐴 𝑥 ∈ ( 𝑓𝑥 ) ) ) → 𝐴 ( 𝑓𝐴 ) )
36 unieq ( 𝑐 = ( 𝑓𝐴 ) → 𝑐 = ( 𝑓𝐴 ) )
37 36 sseq2d ( 𝑐 = ( 𝑓𝐴 ) → ( 𝐴 𝑐𝐴 ( 𝑓𝐴 ) ) )
38 37 rspcev ( ( ( 𝑓𝐴 ) ∈ ( 𝒫 𝐵 ∩ Fin ) ∧ 𝐴 ( 𝑓𝐴 ) ) → ∃ 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 𝑐 )
39 21 35 38 syl2anc ( ( ( 𝐴 𝐵𝐴 ∈ Fin ) ∧ ( 𝑓 : 𝐴𝐵 ∧ ∀ 𝑥𝐴 𝑥 ∈ ( 𝑓𝑥 ) ) ) → ∃ 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 𝑐 )
40 9 39 exlimddv ( ( 𝐴 𝐵𝐴 ∈ Fin ) → ∃ 𝑐 ∈ ( 𝒫 𝐵 ∩ Fin ) 𝐴 𝑐 )