| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( 𝐴  ⊆  ∪  𝐵  ∧  𝐴  ∈  Fin )  →  𝐴  ∈  Fin ) | 
						
							| 2 |  | dfss3 | ⊢ ( 𝐴  ⊆  ∪  𝐵  ↔  ∀ 𝑥  ∈  𝐴 𝑥  ∈  ∪  𝐵 ) | 
						
							| 3 |  | eluni2 | ⊢ ( 𝑥  ∈  ∪  𝐵  ↔  ∃ 𝑧  ∈  𝐵 𝑥  ∈  𝑧 ) | 
						
							| 4 | 3 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝐴 𝑥  ∈  ∪  𝐵  ↔  ∀ 𝑥  ∈  𝐴 ∃ 𝑧  ∈  𝐵 𝑥  ∈  𝑧 ) | 
						
							| 5 | 2 4 | sylbb | ⊢ ( 𝐴  ⊆  ∪  𝐵  →  ∀ 𝑥  ∈  𝐴 ∃ 𝑧  ∈  𝐵 𝑥  ∈  𝑧 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝐴  ⊆  ∪  𝐵  ∧  𝐴  ∈  Fin )  →  ∀ 𝑥  ∈  𝐴 ∃ 𝑧  ∈  𝐵 𝑥  ∈  𝑧 ) | 
						
							| 7 |  | eleq2 | ⊢ ( 𝑧  =  ( 𝑓 ‘ 𝑥 )  →  ( 𝑥  ∈  𝑧  ↔  𝑥  ∈  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 8 | 7 | ac6sfi | ⊢ ( ( 𝐴  ∈  Fin  ∧  ∀ 𝑥  ∈  𝐴 ∃ 𝑧  ∈  𝐵 𝑥  ∈  𝑧 )  →  ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝑥  ∈  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 9 | 1 6 8 | syl2anc | ⊢ ( ( 𝐴  ⊆  ∪  𝐵  ∧  𝐴  ∈  Fin )  →  ∃ 𝑓 ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝑥  ∈  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 10 |  | fimass | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵  →  ( 𝑓  “  𝐴 )  ⊆  𝐵 ) | 
						
							| 11 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 12 | 11 | imaex | ⊢ ( 𝑓  “  𝐴 )  ∈  V | 
						
							| 13 | 12 | elpw | ⊢ ( ( 𝑓  “  𝐴 )  ∈  𝒫  𝐵  ↔  ( 𝑓  “  𝐴 )  ⊆  𝐵 ) | 
						
							| 14 | 10 13 | sylibr | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵  →  ( 𝑓  “  𝐴 )  ∈  𝒫  𝐵 ) | 
						
							| 15 | 14 | ad2antrl | ⊢ ( ( ( 𝐴  ⊆  ∪  𝐵  ∧  𝐴  ∈  Fin )  ∧  ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝑥  ∈  ( 𝑓 ‘ 𝑥 ) ) )  →  ( 𝑓  “  𝐴 )  ∈  𝒫  𝐵 ) | 
						
							| 16 |  | ffun | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵  →  Fun  𝑓 ) | 
						
							| 17 | 16 | ad2antrl | ⊢ ( ( ( 𝐴  ⊆  ∪  𝐵  ∧  𝐴  ∈  Fin )  ∧  ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝑥  ∈  ( 𝑓 ‘ 𝑥 ) ) )  →  Fun  𝑓 ) | 
						
							| 18 |  | simplr | ⊢ ( ( ( 𝐴  ⊆  ∪  𝐵  ∧  𝐴  ∈  Fin )  ∧  ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝑥  ∈  ( 𝑓 ‘ 𝑥 ) ) )  →  𝐴  ∈  Fin ) | 
						
							| 19 |  | imafi | ⊢ ( ( Fun  𝑓  ∧  𝐴  ∈  Fin )  →  ( 𝑓  “  𝐴 )  ∈  Fin ) | 
						
							| 20 | 17 18 19 | syl2anc | ⊢ ( ( ( 𝐴  ⊆  ∪  𝐵  ∧  𝐴  ∈  Fin )  ∧  ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝑥  ∈  ( 𝑓 ‘ 𝑥 ) ) )  →  ( 𝑓  “  𝐴 )  ∈  Fin ) | 
						
							| 21 | 15 20 | elind | ⊢ ( ( ( 𝐴  ⊆  ∪  𝐵  ∧  𝐴  ∈  Fin )  ∧  ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝑥  ∈  ( 𝑓 ‘ 𝑥 ) ) )  →  ( 𝑓  “  𝐴 )  ∈  ( 𝒫  𝐵  ∩  Fin ) ) | 
						
							| 22 |  | ffn | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵  →  𝑓  Fn  𝐴 ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 )  →  𝑓  Fn  𝐴 ) | 
						
							| 24 |  | ssidd | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 )  →  𝐴  ⊆  𝐴 ) | 
						
							| 25 |  | simpr | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝐴 ) | 
						
							| 26 |  | fnfvima | ⊢ ( ( 𝑓  Fn  𝐴  ∧  𝐴  ⊆  𝐴  ∧  𝑥  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑥 )  ∈  ( 𝑓  “  𝐴 ) ) | 
						
							| 27 | 23 24 25 26 | syl3anc | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑥 )  ∈  ( 𝑓  “  𝐴 ) ) | 
						
							| 28 |  | elssuni | ⊢ ( ( 𝑓 ‘ 𝑥 )  ∈  ( 𝑓  “  𝐴 )  →  ( 𝑓 ‘ 𝑥 )  ⊆  ∪  ( 𝑓  “  𝐴 ) ) | 
						
							| 29 | 27 28 | syl | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 )  →  ( 𝑓 ‘ 𝑥 )  ⊆  ∪  ( 𝑓  “  𝐴 ) ) | 
						
							| 30 | 29 | sseld | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  𝑥  ∈  𝐴 )  →  ( 𝑥  ∈  ( 𝑓 ‘ 𝑥 )  →  𝑥  ∈  ∪  ( 𝑓  “  𝐴 ) ) ) | 
						
							| 31 | 30 | ralimdva | ⊢ ( 𝑓 : 𝐴 ⟶ 𝐵  →  ( ∀ 𝑥  ∈  𝐴 𝑥  ∈  ( 𝑓 ‘ 𝑥 )  →  ∀ 𝑥  ∈  𝐴 𝑥  ∈  ∪  ( 𝑓  “  𝐴 ) ) ) | 
						
							| 32 | 31 | imp | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝑥  ∈  ( 𝑓 ‘ 𝑥 ) )  →  ∀ 𝑥  ∈  𝐴 𝑥  ∈  ∪  ( 𝑓  “  𝐴 ) ) | 
						
							| 33 |  | dfss3 | ⊢ ( 𝐴  ⊆  ∪  ( 𝑓  “  𝐴 )  ↔  ∀ 𝑥  ∈  𝐴 𝑥  ∈  ∪  ( 𝑓  “  𝐴 ) ) | 
						
							| 34 | 32 33 | sylibr | ⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝑥  ∈  ( 𝑓 ‘ 𝑥 ) )  →  𝐴  ⊆  ∪  ( 𝑓  “  𝐴 ) ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( ( 𝐴  ⊆  ∪  𝐵  ∧  𝐴  ∈  Fin )  ∧  ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝑥  ∈  ( 𝑓 ‘ 𝑥 ) ) )  →  𝐴  ⊆  ∪  ( 𝑓  “  𝐴 ) ) | 
						
							| 36 |  | unieq | ⊢ ( 𝑐  =  ( 𝑓  “  𝐴 )  →  ∪  𝑐  =  ∪  ( 𝑓  “  𝐴 ) ) | 
						
							| 37 | 36 | sseq2d | ⊢ ( 𝑐  =  ( 𝑓  “  𝐴 )  →  ( 𝐴  ⊆  ∪  𝑐  ↔  𝐴  ⊆  ∪  ( 𝑓  “  𝐴 ) ) ) | 
						
							| 38 | 37 | rspcev | ⊢ ( ( ( 𝑓  “  𝐴 )  ∈  ( 𝒫  𝐵  ∩  Fin )  ∧  𝐴  ⊆  ∪  ( 𝑓  “  𝐴 ) )  →  ∃ 𝑐  ∈  ( 𝒫  𝐵  ∩  Fin ) 𝐴  ⊆  ∪  𝑐 ) | 
						
							| 39 | 21 35 38 | syl2anc | ⊢ ( ( ( 𝐴  ⊆  ∪  𝐵  ∧  𝐴  ∈  Fin )  ∧  ( 𝑓 : 𝐴 ⟶ 𝐵  ∧  ∀ 𝑥  ∈  𝐴 𝑥  ∈  ( 𝑓 ‘ 𝑥 ) ) )  →  ∃ 𝑐  ∈  ( 𝒫  𝐵  ∩  Fin ) 𝐴  ⊆  ∪  𝑐 ) | 
						
							| 40 | 9 39 | exlimddv | ⊢ ( ( 𝐴  ⊆  ∪  𝐵  ∧  𝐴  ∈  Fin )  →  ∃ 𝑐  ∈  ( 𝒫  𝐵  ∩  Fin ) 𝐴  ⊆  ∪  𝑐 ) |