Metamath Proof Explorer


Theorem fisupclrnmpt

Description: A nonempty finite indexed set contains its supremum. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses fisupclrnmpt.x 𝑥 𝜑
fisupclrnmpt.r ( 𝜑𝑅 Or 𝐴 )
fisupclrnmpt.b ( 𝜑𝐵 ∈ Fin )
fisupclrnmpt.n ( 𝜑𝐵 ≠ ∅ )
fisupclrnmpt.c ( ( 𝜑𝑥𝐵 ) → 𝐶𝐴 )
Assertion fisupclrnmpt ( 𝜑 → sup ( ran ( 𝑥𝐵𝐶 ) , 𝐴 , 𝑅 ) ∈ 𝐴 )

Proof

Step Hyp Ref Expression
1 fisupclrnmpt.x 𝑥 𝜑
2 fisupclrnmpt.r ( 𝜑𝑅 Or 𝐴 )
3 fisupclrnmpt.b ( 𝜑𝐵 ∈ Fin )
4 fisupclrnmpt.n ( 𝜑𝐵 ≠ ∅ )
5 fisupclrnmpt.c ( ( 𝜑𝑥𝐵 ) → 𝐶𝐴 )
6 eqid ( 𝑥𝐵𝐶 ) = ( 𝑥𝐵𝐶 )
7 1 6 5 rnmptssd ( 𝜑 → ran ( 𝑥𝐵𝐶 ) ⊆ 𝐴 )
8 6 rnmptfi ( 𝐵 ∈ Fin → ran ( 𝑥𝐵𝐶 ) ∈ Fin )
9 3 8 syl ( 𝜑 → ran ( 𝑥𝐵𝐶 ) ∈ Fin )
10 1 5 6 4 rnmptn0 ( 𝜑 → ran ( 𝑥𝐵𝐶 ) ≠ ∅ )
11 fisupcl ( ( 𝑅 Or 𝐴 ∧ ( ran ( 𝑥𝐵𝐶 ) ∈ Fin ∧ ran ( 𝑥𝐵𝐶 ) ≠ ∅ ∧ ran ( 𝑥𝐵𝐶 ) ⊆ 𝐴 ) ) → sup ( ran ( 𝑥𝐵𝐶 ) , 𝐴 , 𝑅 ) ∈ ran ( 𝑥𝐵𝐶 ) )
12 2 9 10 7 11 syl13anc ( 𝜑 → sup ( ran ( 𝑥𝐵𝐶 ) , 𝐴 , 𝑅 ) ∈ ran ( 𝑥𝐵𝐶 ) )
13 7 12 sseldd ( 𝜑 → sup ( ran ( 𝑥𝐵𝐶 ) , 𝐴 , 𝑅 ) ∈ 𝐴 )